BROWSE

Related Researcher

Author's Photo

Cha, Chaenyung
Integrative Biomaterials Engineering
Research Interests
  • Biopolymer, nanocomposites, microfabrication, tissue engineering, drug delivery

ITEM VIEW & DOWNLOAD

Microfluidic fabrication of cell adhesive chitosan microtubes

Cited 6 times inthomson ciCited 1 times inthomson ci
Title
Microfluidic fabrication of cell adhesive chitosan microtubes
Author
Oh, JonghyunKim, KeekyoungWon, Sung WookCha, ChaenyungGaharwar, Akhilesh K.Selimovic, SeilaBae, HojaeLee, Kwang HoLee, Dong HwanLee, Sang-HoonKhademhosseini, Ali
Keywords
Cell viability; Chitosan-gelatin hydrogel; Microfluidic flow-focusing; Microtube
Issue Date
2013-06
Publisher
SPRINGER
Citation
BIOMEDICAL MICRODEVICES, v.15, no.3, pp.465 - 472
Abstract
Chitosan has been used as a scaffolding material in tissue engineering due to its mechanical properties and biocompatibility. With increased appreciation of the effect of micro- and nanoscale environments on cellular behavior, there is increased emphasis on generating microfabricated chitosan structures. Here we employed a microfluidic coaxial flow-focusing system to generate cell adhesive chitosan microtubes of controlled sizes by modifying the flow rates of a chitosan pre-polymer solution and phosphate buffered saline (PBS). The microtubes were extruded from a glass capillary with a 300 μm inner diameter. After ionic crosslinking with sodium tripolyphosphate (TPP), fabricated microtubes had inner and outer diameter ranges of 70-150 μm and 120-185 μm. Computational simulation validated the controlled size of microtubes and cell attachment. To enhance cell adhesiveness on the microtubes, we mixed gelatin with the chitosan pre-polymer solution. During the fabrication of microtubes, fibroblasts suspended in core PBS flow adhered to the inner surface of chitosan-gelatin microtubes. To achieve physiological pH values, we adjusted pH values of chiotsan pre-polymer solution and TPP. In particular, we were able to improve cell viability to 92 % with pH values of 5.8 and 7.4 for chitosan and TPP solution respectively. Cell culturing for three days showed that the addition of the gelatin enhanced cell spreading and proliferation inside the chitosan-gelatin microtubes. The microfluidic fabrication method for ionically crosslinked chitosan microtubes at physiological pH can be compatible with a variety of cells and used as a versatile platform for microengineered tissue engineering.
URI
Go to Link
DOI
10.1007/s10544-013-9746-z
ISSN
1387-2176
Appears in Collections:
MSE_Journal Papers
Files in This Item:
2-s2.0-84877728399.pdf Download

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU