The magnetization dynamics approaching an equilibrium vortex state from an initial nonequilibrium state under zero magnetic field in a circular shaped Fe disk with thickness of 5 nm and a diameter of 1200 nm were studied. Starting from the initial random configuration of in-plane magnetizations, a great number of vortex and antivortex pairs energetically favorable to form were generated at a lot of nucleation sites. It was found that the sites propagated and then were annihilated by their attractive interactions during the relaxation dynamic process. The study shows that temporal magnetization evolutions can be dominated by the nucleation of the vortex and antivortex pairs, followed by their propagation and annihilation.