BROWSE

Related Researcher

Author's Photo

Jang, Jaesung
Sensors & Aerosols Lab
Research Interests
  • Bio-MEMS
  • Bioaerosols
  • Sensor
  • Aerosol Cleaning
  • Fluid Mechanics at microscales

ITEM VIEW & DOWNLOAD

'Living cantilever arrays' for characterization of mass of single live cells in fluids

Cited 36 times inthomson ciCited 47 times inthomson ci
Title
'Living cantilever arrays' for characterization of mass of single live cells in fluids
Author
Park, KidongJang, JaesungIrimia, DanielSturgis, JenniferLee, JamesRobinson, J. PaulToner, MehmetBashir, Rashid
Keywords
FORCE MICROSCOPE CANTILEVERS;  HELA-CELLS;  GROWTH;  INTERROGATION;  SENSITIVITY;  BIOSENSOR;  SENSORS;  SPORES;  CYCLE;  MTOR
Issue Date
2008
Publisher
ROYAL SOC CHEMISTRY
Citation
LAB ON A CHIP, v.8, no.7, pp.1034 - 1041
Abstract
The size of a cell is a fundamental physiological property and is closely regulated by various environmental and genetic factors. Optical or confocal microscopy can be used to measure the dimensions of adherent cells, and Coulter counter or flow cytometry (forward scattering light intensity) can be used to estimate the volume of single cells in a flow. Although these methods could be used to obtain the mass of single live cells, no method suitable for directly measuring the mass of single adherent cells without detaching them from the surface is currently available. We report the design, fabrication, and testing of 'living cantilever arrays', an approach to measure the mass of single adherent live cells in fluid using silicon cantilever mass sensor. HeLa cells were injected into microfluidic channels with a linear array of functionalized silicon cantilevers and the cells were subsequently captured on the cantilevers with positive dielectrophoresis. The captured cells were then cultured on the cantilevers in a microfluidic environment and the resonant frequencies of the cantilevers were measured. The mass of a single HeLa cell was extracted from the resonance frequency shift of the cantilever and was found to be close to the mass value calculated from the cell density from the literature and the cell volume obtained from confocal microscopy. This approach can provide a new method for mass measurement of a single adherent cell in its physiological condition in a non-invasive manner, as well as optical observations of the same cell. We believe this technology would be very valuable for single cell time-course studies of adherent live cells.
URI
https://scholarworks.unist.ac.kr/handle/201301/7375
DOI
10.1039/b803601b
ISSN
1473-0197
Appears in Collections:
MEN_Journal Papers
Files in This Item:
There are no files associated with this item.

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU