File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

조형준

Cho, Hyungjoon
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 39 -
dc.citation.number 1 -
dc.citation.startPage 28 -
dc.citation.title MAGNETIC RESONANCE IN MEDICINE -
dc.citation.volume 59 -
dc.contributor.author Sigmund, E. E. -
dc.contributor.author Cho, Hyungjoon -
dc.contributor.author Chen, P. -
dc.contributor.author Byrnes, S. -
dc.contributor.author Song, Y. -Q. -
dc.contributor.author Guo, X. E. -
dc.contributor.author Brown, T. R. -
dc.date.accessioned 2023-12-22T09:06:27Z -
dc.date.available 2023-12-22T09:06:27Z -
dc.date.created 2014-10-14 -
dc.date.issued 2008-01 -
dc.description.abstract A new approach to MR trabecular bone characterization is presented. This method probes the diffusion of spins through internal magnetic field gradients due to the susceptibility contrast between the bone and water (or marrow) phases. The resulting spin magnetization decay encodes properties of the underlying structure. This method, termed decay due to diffusion in the internal field (DDIF), is well established as a probe of pore size and structure. In the present work its application is shown for in vitro experiments on excised bovine tibiae samples. A comparison with pulsed field gradient (PFG) measurement of restricted diffusion shows a strong correlation of DDIF with the surface-to-volume ratio (SVR) of bones. Calculation of the internal magnetic field within the bone structure also supports this interpretation. These NMR measurements compare well with the image analysis from microscopic computed tomography (μCT). The SVR is not accessible in the clinically standard densitometry measurements, and provides vital information on bone strength and therefore on its fracture risk. The DDIF and PFG methods derive this information from a straightforward pulse sequence that does not employ either high applied field gradients or microimaging, and thus may have clinical potential. -
dc.identifier.bibliographicCitation MAGNETIC RESONANCE IN MEDICINE, v.59, no.1, pp.28 - 39 -
dc.identifier.doi 10.1002/mrm.21281 -
dc.identifier.issn 0740-3194 -
dc.identifier.scopusid 2-s2.0-37549009939 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/7240 -
dc.identifier.url http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=37549009939 -
dc.identifier.wosid 000251979600005 -
dc.language 영어 -
dc.publisher WILEY-BLACKWELL -
dc.title Diffusion-based MR methods for bone structure and evolution -
dc.type Article -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor trabecular bone -
dc.subject.keywordAuthor diffusion -
dc.subject.keywordAuthor internal field gradient -
dc.subject.keywordAuthor surface-to-volume ratio -
dc.subject.keywordAuthor DDIF -
dc.subject.keywordPlus TRABECULAR BONE -
dc.subject.keywordPlus IN-VIVO -
dc.subject.keywordPlus MAGNETIC-FIELD -
dc.subject.keywordPlus MINERAL DENSITY -
dc.subject.keywordPlus POROUS-MEDIA -
dc.subject.keywordPlus TRANSVERSE-RELAXATION -
dc.subject.keywordPlus SUSCEPTIBILITY -
dc.subject.keywordPlus ARCHITECTURE -
dc.subject.keywordPlus GRADIENTS -
dc.subject.keywordPlus BEHAVIOR -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.