File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Rapid Control Prototyping for Reconfigurable Assembly Workstations

Author(s)
Kim, Bo-Bae
Advisor
Kim, Duck-Young
Issued Date
2017-02
URI
https://scholarworks.unist.ac.kr/handle/201301/72148 http://unist.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002334067
Abstract
Diverse customer demands and rapid technology change have led to a paradigm shift in the manufacturing industry, from mass production to mass customization, and eventually to personalization. In the past, manufacturers have faced a challenge to produce a large volume of a product at low cost. Today, they should however produce a very small volume of a highly personalized product at mass production cost. In order to meet these challenges, rapid configuration or reconfiguration of manufacturing systems are crucial. Therefore, many studies have discussed reconfigurable manufacturing systems, emphasizing on dynamic scheduling and flexible shop floor logistics. However, little attention has given to the hardware control and the corresponding software development, although they are very important and time-consuming tasks for manufacturing system reconfiguration.
Therefore, the main objective of this paper is to quickly design, test, and verify the control software both in a virtual and in a real environment. To do this, we propose a procedure of rapid control prototyping consisting of virtual factory construction, control software development and a final calibration procedure. Rapid control prototyping facilitates engineers to quickly develop control software including communication inputs and outputs, prior to constructing a real shop floor. The proposed simultaneous procedure of manufacturing system design and its control software development will significantly reduce the reconfiguration time of a manufacturing system.
Publisher
Ulsan National Institute of Science and Technology (UNIST)
Degree
Master
Major
Department of System Design and Control Engineering

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.