File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.contributor.advisor Yang, Hyun Jong -
dc.contributor.author Oh, Hyunmyung -
dc.date.accessioned 2024-01-25T13:57:30Z -
dc.date.available 2024-01-25T13:57:30Z -
dc.date.issued 2017-02 -
dc.description.abstract In the fifth generation (5G) cellular network system, user capacity should be improved com- pare with the current 4G network system. To this end, higher resource efficiency is an essential. Orthogonal frequency division multiplexing (OFDM) and orthogonal frequency division mul- tiple access (OFDMA), which has high spectral efficiency resorting to orthogoanlity between subcarriers, is the most commonly used modulation technique in the current 4G network sys- tem. To maintain orthogonality, several types of frame structures are used for synchronized signal transmission and reception in Long Term Evolution (LTE). However, these fixed frame structures result in a fundamental limit for reducing latency. Thus an asynchronous commu- nication scheme has been emerged as one of the solutions to reduce latency. On the contrary, without synchronization, OFDM signals generate interference to each other. Recently, general- ized frequency division multiplexing (GFDM) has been proposed for the asynchronous multiple access. Many studies have evaluated that GFDM has higher sum-rate than OFDM for the asyn- chronous systems owing to the higher spectral efficiency and lower out-of-band emission (OOB). Despite the many advantages, GFDM also has disadvantages such as a high peak-to-average power ratio (PAPR). If the numbers of GFDM and OFDM subcarriers are equal, GFDM will get higher PAPR than OFDM due to multiple subsymbols. To reduce the PAPR, various PAPR reduction techniques have been studied on OFDM such as clipping, selective mapping (SLM), partial transmit sequence (PTS), Tone reservation (TR), and single-carrier frequency division multiple access (SC-FDMA) for LTE uplink. In GFDM, precoded GFDM and generalized fre- quency division multiple access (GFDMA) have been proposed as PAPR reduction techniques. Among PAPR reduction techniques, SLM is one of applicable techniques to the GFDM without signal distortions. In this paper, GFDM SLM is proposed as a PAPR reduction technique. In addtion, the performance analysis is compared in terms of the PAPR, OOB, and spectral efficiency among SC-FDMA, OFDMA, GFDMA, precoded GFDM, and GFDM SLM. -
dc.description.degree Master -
dc.description Department of Electrical Engineering -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/72139 -
dc.identifier.uri http://unist.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002319535 -
dc.language eng -
dc.publisher Ulsan National Institute of Science and Technology (UNIST) -
dc.rights.embargoReleaseDate 9999-12-31 -
dc.rights.embargoReleaseTerms 9999-12-31 -
dc.title PAPR Reduction in GFDM Systems Using an SLM Technique -
dc.type Thesis -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.