File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.contributor.advisor Lee, Seungchul -
dc.contributor.author Min, Hyungcheol -
dc.date.accessioned 2024-01-24T16:58:00Z -
dc.date.available 2024-01-24T16:58:00Z -
dc.date.issued 2016-02 -
dc.description.abstract With the advancement of sensors and data storage technology, condition-based maintenance (CBM) in manufacturing industries is becoming an appropriate approach to build a monitoring system. In this thesis, CBM is conducted for two manufacturing systems: multilayer ceramic capacitor (MLCC) stacker and power plant turbine system. A MLCC stacking machine is a core process of defining a quality of products. It is known that unparalleled upper and lower plates in a pressing step might cause MLCC misalignment. A machine health index which can represent status of this unevenness of the plates has been developed. To prove effectiveness of this machine health index, there have been several experiments and its validated algorithm is implemented in a real production system. Since a turbine system in power plants is core components, many diagnosis systems are already installed. Much information related to a power plant maintenance exists in a form of written documents, but these historical records are mostly not computerized. In addition, such information is often electronically stored as a string data format which is not appropriate data type for statistical analysis. Therefore, we propose to develop a knowledge-based expert system for a power plant monitoring system to overcome such limitations of computerization of scattered written information. Furthermore, an algorithm based on the recursive Bayesian estimation is suggested to recommend the most appropriate root cause from multiple observed symptoms of machine fault. -
dc.description.degree Master -
dc.description Department of Human and Systems Engineering -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/72023 -
dc.identifier.uri http://unist.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002236423 -
dc.language eng -
dc.publisher Ulsan National Institute of Science and Technology (UNIST) -
dc.rights.embargoReleaseDate 9999-12-31 -
dc.rights.embargoReleaseTerms 9999-12-31 -
dc.subject Bayesian Statistic, Condition-based Maintenance, Knowledge-based Expert System -
dc.title Statistical Approaches for Fault Diagnostics and Root Cause Analysis with Industrial Applications -
dc.type Thesis -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.