File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

곽상규

Kwak, Sang Kyu
Kyu’s MolSim Lab @ UNIST
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.number 1 -
dc.citation.startPage 5822 -
dc.citation.title NATURE COMMUNICATIONS -
dc.citation.volume 14 -
dc.contributor.author Kim, Changmin -
dc.contributor.author Park, Sung O. -
dc.contributor.author Kwak, Sang Kyu -
dc.contributor.author Xia, Zhenhai -
dc.contributor.author Kim, Guntae -
dc.contributor.author Dai, Liming -
dc.date.accessioned 2024-01-19T12:05:28Z -
dc.date.available 2024-01-19T12:05:28Z -
dc.date.created 2024-01-18 -
dc.date.issued 2023-09 -
dc.description.abstract Electrosynthesis of hydrogen peroxide via selective two-electron transfer oxygen reduction or water oxidation reactions offers a cleaner, cost-effective alternative to anthraquinone processes. However, it remains a challenge to achieve high Faradaic efficiencies at elevated current densities. Herein, we report that oxygen-deficient Pr1.0Sr1.0Fe0.75Zn0.25O4-delta perovskite oxides rich of oxygen vacancies can favorably bind the reaction intermediates to facilitate selective and efficient two-electron transfer pathways. These oxides exhibited superior Faradic efficiencies (similar to 99%) for oxygen reduction over a wide potential range (0.05 to 0.45 V versus reversible hydrogen electrode) and current densities surpassing 50 mA cm(-2) under high ionic strengths. We further found that the oxides perform a high selectivity (similar to 80%) for two-electron transfer water oxidation reaction at a low overpotential (0.39 V). Lastly, we devised a membrane-free electrolyser employing bifunctional electrocatalysts, achieving a record-high Faradaic efficiency of 163.0% at 2.10 V and 50 mA cm(-2). This marks the first report of the concurrent oxygen reduction and water oxidation catalysed by efficient bifunctional oxides in a novel membrane-free electrolyser for scalable hydrogen peroxide electrosynthesis. -
dc.identifier.bibliographicCitation NATURE COMMUNICATIONS, v.14, no.1, pp.5822 -
dc.identifier.doi 10.1038/s41467-023-41397-1 -
dc.identifier.issn 2041-1723 -
dc.identifier.scopusid 2-s2.0-85171812248 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/68070 -
dc.identifier.wosid 001149254400013 -
dc.language 영어 -
dc.publisher NATURE PORTFOLIO -
dc.title Concurrent oxygen reduction and water oxidation at high ionic strength for scalable electrosynthesis of hydrogen peroxide -
dc.type Article -
dc.description.isOpenAccess TRUE -
dc.relation.journalWebOfScienceCategory Multidisciplinary Sciences -
dc.relation.journalResearchArea Science & Technology - Other Topics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus ELECTROCHEMICAL SYNTHESIS -
dc.subject.keywordPlus H2O2 -
dc.subject.keywordPlus ELECTROCATALYST -
dc.subject.keywordPlus SELECTIVITY -
dc.subject.keywordPlus PEROVSKITES -
dc.subject.keywordPlus OXIDE -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.