File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

박형렬

Park, Hyeong‐Ryeol
Laboratory for Ultrafast & Nanoscale Plasmonics
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 11692 -
dc.citation.number 24 -
dc.citation.startPage 11685 -
dc.citation.title NANO LETTERS -
dc.citation.volume 23 -
dc.contributor.author Lee, Hyoung-Taek -
dc.contributor.author Kim, Jeonghoon -
dc.contributor.author Lee, Joon Sue -
dc.contributor.author Yoon, Mina -
dc.contributor.author Park, Hyeong‐Ryeol -
dc.date.accessioned 2023-12-20T17:05:10Z -
dc.date.available 2023-12-20T17:05:10Z -
dc.date.created 2023-12-20 -
dc.date.issued 2023-12 -
dc.description.abstract The rapid development of 6G communications using terahertz (THz) electromagnetic waves has created a demand for highly sensitive THz nanoresonators capable of detecting these waves. Among the potential candidates, THz nanogap loop arrays show promising characteristics but require significant computational resources for accurate simulation. This requirement arises because their unit cells are 10 times smaller than millimeter wavelengths, with nanogap regions that are 1 000 000 times smaller. To address this challenge, we propose a rapid inverse design method using physics-informed machine learning, employing double deep Q-learning with an analytical model of the THz nanogap loop array. In ∼39 h on a middle-level personal computer, our approach identifies the optimal structure through 200 000 iterations, achieving an experimental electric field enhancement of 32 000 at 0.2 THz, 300% stronger than prior results. Our analytical model-based approach significantly reduces the amount of computational resources required, offering a practical alternative to numerical simulation-based inverse design for THz nanodevices. -
dc.identifier.bibliographicCitation NANO LETTERS, v.23, no.24, pp.11685 - 11692 -
dc.identifier.doi 10.1021/acs.nanolett.3c03572 -
dc.identifier.issn 1530-6984 -
dc.identifier.scopusid 2-s2.0-85180072412 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/66727 -
dc.identifier.wosid 001133417200001 -
dc.language 영어 -
dc.publisher American Chemical Society -
dc.title More Than 30 000-fold Field Enhancement of Terahertz Nanoresonators Enabled by Rapid Inverse Design -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalResearchArea Chemistry;Science & Technology - Other Topics;Materials Science;Physics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor terahertz nanoresonator -
dc.subject.keywordAuthor physics-informed machine learning -
dc.subject.keywordAuthor inverse design -
dc.subject.keywordAuthor double deep Q-learning -
dc.subject.keywordAuthor nanogaploop array -
dc.subject.keywordAuthor terahertz time-domain spectroscopy -
dc.subject.keywordPlus CHALLENGES -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.