File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher


An, Kwangjin
Advanced Nanocatalysis Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.startPage 146662 -
dc.citation.volume 476 - Kim, Ho Young - Lee, Yeongseop - Kim, Jihun - Woo, Jinwoo - Jun, Yongseok - Son, Hae Jung - An, Kwangjin - Kim, Jin Young - 2023-12-14T17:10:22Z - 2023-12-14T17:10:22Z - 2023-12-08 - 2023-11 -
dc.description.abstract The durability of polymer electrolyte membrane fuel cells (PEMFCs) crucially depends on the use of antioxidants to prevent electrocatalyst degradation. Here, we report for the first time, by in situ X-ray absorption and H2O2 electrochemistry, that ceria significantly weakens the Pt-surface oxophilicity, which determines oxygen reduction (ORR) activity and durability, within the PEMFC cathode. Ceria mitigates catalyst disintegration and improves ORR durability by Pt oxophilicity reduction and its inherent radical scavenging behavior. We also found that the antioxidation efficacy of ceria could be finely tuned through nanostructuring. Among various ceria nanostructures, tubular ceria nanoarchitectures (CeOx NT), designed to have the largest surface area and abundant oxygen vacancies, enable the most potent interaction between Pt and Ce without direct chemical contact with Pt. The nanotubular structure confers superior multifunctional antioxidant therapeutic efficacy to Pt/C catalyst in PEMFCs, resulting in outstanding durability that retains 94% of initial performance after 100-hour tests. -
dc.identifier.bibliographicCitation CHEMICAL ENGINEERING JOURNAL, v.476, pp.146662 -
dc.identifier.doi 10.1016/j.cej.2023.146662 -
dc.identifier.issn 1385-8947 -
dc.identifier.scopusid 2-s2.0-85174712740 -
dc.identifier.uri -
dc.identifier.wosid 001096469300001 -
dc.language 영어 -
dc.publisher ELSEVIER SCIENCE SA -
dc.title Ceria tubular nanoarchitecture antioxidants achieve sustainable fuel cell devices via tuning the oxophilicity of Pt catalytic surfaces and radical scavenging -
dc.type Article -
dc.description.isOpenAccess TRUE -
dc.relation.journalWebOfScienceCategory Engineering, Environmental; Engineering, Chemical -
dc.relation.journalResearchArea Engineering -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Ceria -
dc.subject.keywordAuthor Nanoarchitectures -
dc.subject.keywordAuthor Electrocatalysis -
dc.subject.keywordAuthor Antioxidants -
dc.subject.keywordAuthor Polymer electrolyte membrane fuel cells -
dc.subject.keywordPlus OXYGEN-REDUCTION -
dc.subject.keywordPlus PLATINUM -
dc.subject.keywordPlus ELECTROCATALYSTS -
dc.subject.keywordPlus NANOSTRUCTURES -
dc.subject.keywordPlus DURABILITY -
dc.subject.keywordPlus REACTIVITY -
dc.subject.keywordPlus CHEMISTRY -
dc.subject.keywordPlus OXIDATION -
dc.subject.keywordPlus METHANOL -
dc.subject.keywordPlus SITES -


Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.