Deep Learning-Assisted Beamforming Design and BER Evaluation in Multi-User Downlink Systems
Cited 0 times in
Cited 0 times in
- Title
- Deep Learning-Assisted Beamforming Design and BER Evaluation in Multi-User Downlink Systems
- Author
- Kim, Junbeom; Lee, Hoon; Hong, Seung-Eun; Park, Seok-Hwan
- Issue Date
- 2021-08-17
- Publisher
- IEEE
- Citation
- 2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN)
- Abstract
- This paper studies deep learning-based beamforming design schemes for multi-user downlink systems. Two distinct objectives are considered: sum-rate maximization and min-rate maximization. Each of formulations is first tackled by classical majorization-minimization (MM) algorithms that find a locally optimum point iteratively. To reduce computational overheads of the MM algorithms, deep neural networks (DNNs) are introduced which yield optimized beamforming solutions from channel vector inputs. Performance of trained DNNs is evaluated in terms of bit-error rate (BER) measure. Numerical results show that deep learning approaches achieve the BER performance very close to MM algorithms with much reduced complexity. Also, it is desirable to adopt the minimum-rate criterion to achieve low BER performance rather than sum-rate.
- URI
- https://scholarworks.unist.ac.kr/handle/201301/65517
- URL
- https://ieeexplore.ieee.org/document/9528786
- DOI
- 10.1109/icufn49451.2021.9528786
- Appears in Collections:
- EE_Conference Papers
- Files in This Item:
- There are no files associated with this item.
can give you direct access to the published full text of this article. (UNISTARs only)
Show full item record
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.