File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

이현정

Lee, Hyeon Jeong
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 7752 -
dc.citation.number 18 -
dc.citation.startPage 7285 -
dc.citation.title NANO LETTERS -
dc.citation.volume 22 -
dc.contributor.author Lee, Hyeon Jeong -
dc.contributor.author Liu, Xiaoxiao -
dc.contributor.author Chart, Yvonne -
dc.contributor.author Tang, Peng -
dc.contributor.author Bae, Jin-Gyu -
dc.contributor.author Narayanan, Sudarshan -
dc.contributor.author Lee, Ji Hoon -
dc.contributor.author Potter, Richard J. -
dc.contributor.author Sun, Yongming -
dc.contributor.author Pasta, Mauro -
dc.date.accessioned 2023-12-21T13:39:29Z -
dc.date.available 2023-12-21T13:39:29Z -
dc.date.created 2023-09-04 -
dc.date.issued 2022-09 -
dc.description.abstract Solid-state batteries (SSBs) have received attention as a next-generation energy storage technology due to their potential to superior deliver energy density and safety compared to commercial Li-ion batteries. One of the main challenges limiting their practical implementation is the rapid capacity decay caused by the loss of contact between the cathode active material and the solid electrolyte upon cycling. Here, we use the promising highvoltage, low-cost LiNi0.5Mn1.5O4 (LNMO) as a model system to demonstrate the importance of the cathode microstructure in SSBs. We design Al2O3-coated LNMO particles with a hollow microstructure aimed at suppressing electrolyte decomposition, minimizing volume change during cycling, and shortening the Li diffusion pathway to achieve maximum cathode utilization. When cycled with a Li6PS5Cl solid electrolyte, we demonstrate a capacity retention above 70% after 100 cycles, with an active material loading of 27 mg cm(-2) (2.2 mAh cm(-2)) at a current density of 0.8 mA cm(-2). -
dc.identifier.bibliographicCitation NANO LETTERS, v.22, no.18, pp.7285 - 7752 -
dc.identifier.doi 10.1021/acs.nanolett.2c02426 -
dc.identifier.issn 1530-6984 -
dc.identifier.scopusid 2-s2.0-85137908854 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/65340 -
dc.identifier.wosid 000859484900001 -
dc.language 영어 -
dc.publisher AMER CHEMICAL SOC -
dc.title LiNi0.5Mn1.5O4 Cathode Microstructure for All-Solid-State Batteries -
dc.type Article -
dc.description.isOpenAccess TRUE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.type.docType Article; Early Access -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor cathode microstructure -
dc.subject.keywordAuthor solid-state batteries -
dc.subject.keywordAuthor areal capacities -
dc.subject.keywordAuthor high-voltage cathodes -
dc.subject.keywordAuthor interfaces -
dc.subject.keywordPlus AL2O3 -
dc.subject.keywordPlus ELECTROLYTES -
dc.subject.keywordPlus STABILITY -
dc.subject.keywordPlus NCM -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.