File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

임정호

Im, Jungho
Intelligent Remote sensing and geospatial Information Science Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.startPage 106787 -
dc.citation.title ATMOSPHERIC RESEARCH -
dc.citation.volume 290 -
dc.contributor.author Cho, Yeseul -
dc.contributor.author Kim, Jhoon -
dc.contributor.author Lee, Jeewoo -
dc.contributor.author Choi, Myungje -
dc.contributor.author Lim, Hyunkwang -
dc.contributor.author Lee, Seoyoung -
dc.contributor.author Im, Jungho -
dc.date.accessioned 2023-12-21T11:53:43Z -
dc.date.available 2023-12-21T11:53:43Z -
dc.date.created 2023-07-05 -
dc.date.issued 2023-07 -
dc.description.abstract Fine particulate matter with a diameter below 2.5 lim (PM2.5) is deleterious to the cardiovascular and respiratory systems. It is often difficult to assess the effects of PM2.5 on human health over regions with limited ground monitoring sites, especially in East Asia. As an alternative, we estimated near-surface PM2.5 concentrations by analyzing Advanced Himawari Imager (AHI) Yonsei Aerosol Retrieval (YAER) products. This study incorporates daytime data for East Asia covering the Korean Peninsula, China, Japan, Southeast Asia, and southern Mongolia. We collocated AHI YAER product pixels with meteorological, land-cover, and other ancillary data for the period from March 2018 to February 2019. To estimate PM2.5 concentrations over wide areas spanning many countries displaying various relationships between aerosol optical depth and PM2.5, monthly models were developed by considering both the spatial and temporal characteristics of ground-based PM2.5 measurements. Random forest machine learning model estimated ground-level mass concentrations of PM2.5; subsequent 10-fold cross vali-dation (CV) yielded a CV R-2 value of 0.81 and a CV root mean squared error (RMSE) of 12.3 lig m(-3). We investigated the spatial pattern of PM2.5 concentrations over multiple countries and seasonal variation in PM2.5 concentrations. Diurnal variation of a severe PM2.5 event in the Korean Peninsula was investigated as a case study. The model captured the extremely heterogeneous spatial distribution of PM2.5 concentrations peaked around local noon. To measure the capability of the developed model to estimate PM2.5 concentrations in areas with few in-situ data, its predictive performance was evaluated using a dataset independent of the training process with an R-2 of 0.60 and RMSE of 8.18 lig m(-3). This study demonstrates the potential for satellite-based PM2.5 estimation for areas with insufficient measuring stations. -
dc.identifier.bibliographicCitation ATMOSPHERIC RESEARCH, v.290, pp.106787 -
dc.identifier.doi 10.1016/j.atmosres.2023.106787 -
dc.identifier.issn 0169-8095 -
dc.identifier.scopusid 2-s2.0-85154047691 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/64774 -
dc.identifier.url https://www.sciencedirect.com/science/article/pii/S0169809523001849?via%3Dihub -
dc.identifier.wosid 000997681700001 -
dc.language 영어 -
dc.publisher ELSEVIER SCIENCE INC -
dc.title Fine particulate concentrations over East Asia derived from aerosols measured by the advanced Himawari Imager using machine learning -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Meteorology & Atmospheric Sciences -
dc.relation.journalResearchArea Meteorology & Atmospheric Sciences -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor PM2.5 -
dc.subject.keywordAuthor AHI AOD -
dc.subject.keywordAuthor Machine learning -
dc.subject.keywordAuthor East Asia -
dc.subject.keywordPlus LEVEL PM2.5 CONCENTRATIONS -
dc.subject.keywordPlus 2016 KORUS-AQ -
dc.subject.keywordPlus OPTICAL DEPTH -
dc.subject.keywordPlus MATTER CONCENTRATIONS -
dc.subject.keywordPlus AIR-POLLUTION -
dc.subject.keywordPlus URBAN AREA -
dc.subject.keywordPlus CHINA -
dc.subject.keywordPlus MODEL -
dc.subject.keywordPlus PM10 -
dc.subject.keywordPlus IMPACT -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.