File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

김동혁

Kim, Donghyuk
Systems Biology and Machine Learning Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.number 1 -
dc.citation.startPage 120 -
dc.citation.title BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS -
dc.citation.volume 15 -
dc.contributor.author Kim, Ye Eun -
dc.contributor.author Cho, Kyung Hyun -
dc.contributor.author Bang, Ina -
dc.contributor.author Kim, Chang Hee -
dc.contributor.author Ryu, Young Shin -
dc.contributor.author Kim, Yuchan -
dc.contributor.author Choi, Eun Mi -
dc.contributor.author Nong, Linh Khanh -
dc.contributor.author Kim, Donghyuk -
dc.contributor.author Lee, Sung Kuk -
dc.date.accessioned 2023-12-21T13:17:31Z -
dc.date.available 2023-12-21T13:17:31Z -
dc.date.created 2023-06-22 -
dc.date.issued 2022-11 -
dc.description.abstract Background Escherichia coli have both the Embden-Meyerhof-Parnas pathway (EMPP) and Entner-Doudoroff pathway (EDP) for glucose breakdown, while the EDP primarily remains inactive for glucose metabolism. However, EDP is a more favorable route than EMPP for the production of certain products. Results EDP was activated by deleting the pfkAB genes in conjunction with subsequent adaptive laboratory evolution (ALE). The evolved strains acquired mutations in transcriptional regulatory genes for glycolytic process (crp, galR, and gntR) and in glycolysis-related genes (gnd, ptsG, and talB). The genotypic, transcriptomic and phenotypic analyses of those mutations deepen our understanding of their beneficial effects on cellulosic biomass bio-conversion. On top of these scientific understandings, we further engineered the strain to produce higher level of lycopene and 3-hydroxypropionic acid. Conclusions These results indicate that the E. coli strain has innate capability to use EDP in lieu of EMPP for glucose metabolism, and this versatility can be harnessed to further engineer E. coli for specific biotechnological applications. -
dc.identifier.bibliographicCitation BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS, v.15, no.1, pp.120 -
dc.identifier.doi 10.1186/s13068-022-02219-6 -
dc.identifier.issn 1754-6834 -
dc.identifier.scopusid 2-s2.0-85141714943 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/64601 -
dc.identifier.wosid 000885077700001 -
dc.language 영어 -
dc.publisher BMC -
dc.title.alternative Characterization of an Entner–Doudoroff pathway-activated Escherichia coli -
dc.title Characterization of an Entner-Doudoroff pathway-activated Escherichia coli -
dc.type Article -
dc.description.isOpenAccess TRUE -
dc.relation.journalWebOfScienceCategory Biotechnology & Applied Microbiology; Energy & Fuels -
dc.relation.journalResearchArea Biotechnology & Applied Microbiology; Energy & Fuels -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Escherichia coli -
dc.subject.keywordAuthor Glucose metabolism -
dc.subject.keywordAuthor Entner-Doudoroff pathway -
dc.subject.keywordAuthor Adaptive laboratory evolution -
dc.subject.keywordAuthor Phosphofructokinase -
dc.subject.keywordAuthor 3-Hydroxypropionic acid -
dc.subject.keywordPlus CARBOHYDRATE-METABOLISM -
dc.subject.keywordPlus SMALL RNA -
dc.subject.keywordPlus EXPRESSION -
dc.subject.keywordPlus GENE -
dc.subject.keywordPlus GLUCOSE-TRANSPORT -
dc.subject.keywordPlus ZYMOMONAS-MOBILIS -
dc.subject.keywordPlus PENTOSE-PHOSPHATE PATHWAY -
dc.subject.keywordPlus REDUCTIVE BIOTRANSFORMATION -
dc.subject.keywordPlus PHOSPHOGLUCOSE ISOMERASE -
dc.subject.keywordPlus 3-HYDROXYPROPIONIC ACID -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.