Related Researcher

Author's Photo

Im, Jungho
Intelligent Remote sensing and geospatial Information Science (IRIS) Lab
Research Interests
  • Remote sensing, Artificial Intelligence, Geospatial modeling, Disaster monitoring and management, Climate change


Performance of Drought Indices in Assessing Rice Yield in North Korea and South Korea under the Different Agricultural Systems

Cited 0 times inthomson ciCited 0 times inthomson ci
Performance of Drought Indices in Assessing Rice Yield in North Korea and South Korea under the Different Agricultural Systems
Park, SeonyoungLee, JaeseYeom, JongminSeo, EunkyoIm, Jungho
Issue Date
Multidisciplinary Digital Publishing Institute (MDPI)
REMOTE SENSING, v.14, no.23, pp.6161
Drought affects a region’s economy intensively and its severity is based on the level of infrastructure present in the affected region. Therefore, it is important not only to reflect on the conventional environmental properties of drought, but also on the infrastructure of the target region for adequate assessment and mitigation. Various drought indices are available to interpret the distinctive meteorological, agricultural, and hydrological characteristics of droughts. However, these drought indices do not consider the effective assessment of damage of drought impact. In this study, we evaluated the applicability of satellite-based drought indices over North Korea and South Korea, which have substantially different agricultural infrastructure systems to understand their characteristics. We compared satellite-based drought indices to in situ-based drought indices, standardized precipitation index (SPI), and rice yield over the Korean Peninsula. Moderate resolution imaging spectroradiometer (MODIS), tropical rainfall measuring mission (TRMM), and global land data assimilation system (GLDAS) data from 2001 to 2018 were used to calculate drought indices. The correlations of the indices in terms of monitoring meteorological and agricultural droughts in rice showed opposite correlation patterns between the two countries. The difference in the prevailing agricultural systems including irrigation resulted in different impacts of drought. Vegetation condition index (VCI) and evaporative stress index (ESI) are best suited to assess agricultural drought under well-irrigated regions as in South Korea. In contrast, most of the drought indices except for temperature condition index (TCI) are suitable for regions with poor agricultural infrastructure as in North Korea.</jats:p>
Appears in Collections:
UEE_Journal Papers
Files in This Item:
There are no files associated with this item.

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record


  • mendeley


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.