File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

박태은

Park, Tae-Eun
Micro Tissue Engineering & Nanomedicine Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.number 25 -
dc.citation.startPage 2211149 -
dc.citation.title ADVANCED MATERIALS -
dc.citation.volume 35 -
dc.contributor.author Jung, Su Hyun -
dc.contributor.author Jang, Bong Hwan -
dc.contributor.author Kwon, Seyong -
dc.contributor.author Park, Sung Jin -
dc.contributor.author Park, Tae-Eun -
dc.contributor.author Kang, Joo H. -
dc.date.accessioned 2023-12-21T12:37:25Z -
dc.date.available 2023-12-21T12:37:25Z -
dc.date.created 2023-06-12 -
dc.date.issued 2023-06 -
dc.description.abstract Autologous implantable scaffolds that induce vasculogenesis have shown great potential in tissue regeneration; however, previous attempts mainly relied on cell-laden hydrogel patches using fat tissues or platelet-rich plasma, which are insufficient for generating a uniform vasculature in a scalable manner. Here, implantable vascularized engineered thrombi (IVETs) are presented using autologous whole blood, which potentiate effective skin wound healing by constructing robust microcapillary vessel networks at the wound site. Microfluidic shear stresses enable the alignment of bundled fibrin fibers along the direction of the blood flow streamlines and the activation of platelets, both of which offer moderate stiffness of the microenvironment optimal for facilitating endothelial cell maturation and vascularization. Rodent dorsal skin wounds patched with IVET present superior wound closure rates (96.08 +/- 1.58%), epidermis thickness, collagen deposition, hair follicle numbers, and neutrophil infiltration, which are permitted by enhanced microvascular circulation. Moreover, IVET treatment accelerates wound healing by recruiting M2 phenotype macrophages. -
dc.identifier.bibliographicCitation ADVANCED MATERIALS, v.35, no.25, pp.2211149 -
dc.identifier.doi 10.1002/adma.202211149 -
dc.identifier.issn 0935-9648 -
dc.identifier.scopusid 2-s2.0-85153777598 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/64504 -
dc.identifier.wosid 000978474500001 -
dc.language 영어 -
dc.publisher WILEY-V C H VERLAG GMBH -
dc.title Nematic Fibrin Fibers Enabling Vascularized Thrombus Implants Facilitate Scarless Cutaneous Wound Healing -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.type.docType Article; Early Access -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor anastomosis -
dc.subject.keywordAuthor autologous scaffolds -
dc.subject.keywordAuthor bacteria infected wound healing -
dc.subject.keywordAuthor full-thickness wound healing -
dc.subject.keywordAuthor microfluidic engineered hydrogels -
dc.subject.keywordAuthor vascularized implants -
dc.subject.keywordPlus ARTIFICIAL SKIN-GRAFTS -
dc.subject.keywordPlus SPLIT-THICKNESS SKIN -
dc.subject.keywordPlus PLATELET-RICH -
dc.subject.keywordPlus STEM-CELLS -
dc.subject.keywordPlus MATRIX -
dc.subject.keywordPlus ELECTROSPUN -
dc.subject.keywordPlus HYDROGELS -
dc.subject.keywordPlus SCAFFOLD -
dc.subject.keywordPlus ANGIOGENESIS -
dc.subject.keywordPlus SUBSTITUTES -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.