File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 2474 -
dc.citation.number 5 -
dc.citation.startPage 2463 -
dc.citation.title ACS ENERGY LETTERS -
dc.citation.volume 8 -
dc.contributor.author Oh, Kyeong-Seok -
dc.contributor.author Park, Sodam -
dc.contributor.author Kim, Jae-Seung -
dc.contributor.author Yao, Ying -
dc.contributor.author Kim, Jung-Hui -
dc.contributor.author Guo, Jia -
dc.contributor.author Seo, Dong-Hwa -
dc.contributor.author Lee, Sang-Young -
dc.date.accessioned 2023-12-21T12:39:34Z -
dc.date.available 2023-12-21T12:39:34Z -
dc.date.created 2023-06-05 -
dc.date.issued 2023-05 -
dc.description.abstract Regulating electrostatic interactions between charged molecules is crucial for enabling advanced batteries with electrochemical reliability. To address this issue, herein, we present a class of electrostatic covalent organic frameworks (COFs) as on-demand molecular traps for high-energy-density Li metal batteries (LMBs). A bipyridine-based COF and its quaternized derivative are synthesized and incorporated into LiNi0.8Co0.1Mn0.1O2 (NCM811) cathodes and Li metal protective layers, respectively. These COF molecular traps are effective in chelating transition metal ions dissolved from the cathodes, enhancing Li+ desolvation, suppressing solvent decomposition, and immobilizing anions of electrolytes. The resulting LMB with the COF molecular traps fully utilizes the theoretical specific capacity of NCM811 at cathodes and allows stable Li plating/ stripping at anodes. A pouch-type LMB full cell with the COF molecular traps provides high gravimetric/volumetric energy densities (466.7 Wh k(gcell)( -1)/1370.1 Wh L-cell(-1)) under a constrained cell configuration, exceeding those of previously reported Li metal batteries based on porous crystalline frameworks. -
dc.identifier.bibliographicCitation ACS ENERGY LETTERS, v.8, no.5, pp.2463 - 2474 -
dc.identifier.doi 10.1021/acsenergylett.3c00600 -
dc.identifier.issn 2380-8195 -
dc.identifier.scopusid 2-s2.0-85159556287 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/64409 -
dc.identifier.wosid 000986609200001 -
dc.language 영어 -
dc.publisher American Chemical Society (ACS) -
dc.title Electrostatic Covalent Organic Frameworks as On-Demand Molecular Traps for High-Energy Li Metal Battery Electrodes -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Physical;Electrochemistry;Energy & Fuels;Nanoscience & Nanotechnology;Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Chemistry;Electrochemistry;Energy & Fuels;Science & Technology - Other Topics;Materials Science -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus LAYERED OXIDE CATHODES -
dc.subject.keywordPlus ION BATTERIES -
dc.subject.keywordPlus LITHIUM -
dc.subject.keywordPlus ANODE -
dc.subject.keywordPlus CELLS -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.