File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

DingFeng

Ding, Feng
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 72 -
dc.citation.number 7955 -
dc.citation.startPage 66 -
dc.citation.title NATURE -
dc.citation.volume 616 -
dc.contributor.author Tan, Congwei -
dc.contributor.author Yu, Mengshi -
dc.contributor.author Tang, Junchuan -
dc.contributor.author Gao, Xiaoyin -
dc.contributor.author Yin, Yuling -
dc.contributor.author Zhang, Yichi -
dc.contributor.author Wang, Jingyue -
dc.contributor.author Gao, Xinyu -
dc.contributor.author Zhang, Congcong -
dc.contributor.author Zhou, Xuehan -
dc.contributor.author Zheng, Liming -
dc.contributor.author Liu, Hongtao -
dc.contributor.author Jiang, Kaili -
dc.contributor.author Ding, Feng -
dc.contributor.author Peng, Hailin -
dc.date.accessioned 2023-12-21T12:42:31Z -
dc.date.available 2023-12-21T12:42:31Z -
dc.date.created 2023-05-08 -
dc.date.issued 2023-04 -
dc.description.abstract Precise integration of two-dimensional (2D) semiconductors and high-dielectric-constant (k) gate oxides into three-dimensional (3D) vertical-architecture arrays holds promise for developing ultrascaled transistors(1-5), but has proved challenging. Here we report the epitaxial synthesis of vertically aligned arrays of 2D fin-oxide heterostructures, a new class of 3D architecture in which high-mobility 2D semiconductor fin Bi2O2Se and single-crystal high-k gate oxide Bi2SeO5 are epitaxially integrated. These 2D fin-oxide epitaxial heterostructures have atomically flat interfaces and ultrathin fin thickness down to one unit cell (1.2 nm), achieving wafer-scale, site-specific and high-density growth of mono-oriented arrays. The as-fabricated 2D fin field-effect transistors (FinFETs) based on Bi2O2Se/Bi2SeO5 epitaxial heterostructures exhibit high electron mobility (mu) up to 270 cm2 V-1 s(-1), ultralow off-state current (I-OFF) down to about 1 pA mu m(-1), high on/off current ratios (I-ON/I-OFF) up to 10(8) and high on-state current (I-ON) up to 830 mu A mu m(-1) at 400-nm channel length, which meet the low-power specifications projected by the International Roadmap for Devices and Systems (IRDS)(6). The 2D fin-oxide epitaxial heterostructures open up new avenues for the further extension of Moore's law. -
dc.identifier.bibliographicCitation NATURE, v.616, no.7955, pp.66 - 72 -
dc.identifier.doi 10.1038/s41586-023-05797-z -
dc.identifier.issn 0028-0836 -
dc.identifier.scopusid 2-s2.0-85150733225 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/64251 -
dc.identifier.wosid 001168998000014 -
dc.language 영어 -
dc.publisher NATURE PORTFOLIO -
dc.title 2D fin field-effect transistors integrated with epitaxial high-k gate oxide -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Multidisciplinary Sciences -
dc.relation.journalResearchArea Science & Technology - Other Topics -
dc.type.docType Article; Early Access -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus 2-DIMENSIONAL MATERIALS -
dc.subject.keywordPlus MOORES LAW -
dc.subject.keywordPlus MOBILITY -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.