File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

정성균

Jung, Sung-Kyun
Energy Materials Research Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.number 16 -
dc.citation.startPage 2203861 -
dc.citation.title ADVANCED ENERGY MATERIALS -
dc.citation.volume 13 -
dc.contributor.author Park, Chanhyun -
dc.contributor.author Lee, Juho -
dc.contributor.author Lee, Sangpyo -
dc.contributor.author Han, Yu Jin -
dc.contributor.author Kim, Jinsoo -
dc.contributor.author Jung, Sung-Kyun -
dc.date.accessioned 2023-12-21T12:43:27Z -
dc.date.available 2023-12-21T12:43:27Z -
dc.date.created 2023-03-31 -
dc.date.issued 2023-04 -
dc.description.abstract Keeping both the chemical and physical state of the electrode-electrolyte interface intact is one of the greatest challenges in achieving solid-state batteries (SSBs) with longer cycle lives. Herein, the use of organic electrolyte additives in the cathode electrolyte interphase (CEI) layer to mitigate the intertwined chemical and mechanical degradation in sulfide-based SSBs is demonstrated. Lithium difluorobis(oxalato)phosphate (LiDFBOP) and argyrodite (Li6PS5Cl) are used as a model system, with the LiDFBOP-derived CEI layer induced by irreversible oxidation above 4.12 V (vs Li+/Li) during the formation cycle exhibiting dual functions. This CEI layer retards the rate of chemical degradation between the cathode active particles and solid electrolytes at high charging potential and helps maintain intimate physical contact even at a low stack pressure of 0.75 MPa. The improved physical contact enables delivery of a high initial capacity, while chemical stability suppressing the sulfite or sulfate formation has a more dominant effect on the long-term cycle stability. This study presents a new perspective and strategies for designing cathode coating materials for sulfide-based SSBs beyond the typically used inorganic oxide materials. -
dc.identifier.bibliographicCitation ADVANCED ENERGY MATERIALS, v.13, no.16, pp.2203861 -
dc.identifier.doi 10.1002/aenm.202203861 -
dc.identifier.issn 1614-6832 -
dc.identifier.scopusid 2-s2.0-85150517254 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/62472 -
dc.identifier.wosid 000945901700001 -
dc.language 영어 -
dc.publisher WILEY-V C H VERLAG GMBH -
dc.title Organic-Additive-Derived Cathode Electrolyte Interphase Layer Mitigating Intertwined Chemical and Mechanical Degradation for Sulfide-Based Solid-State Batteries -
dc.type Article -
dc.description.isOpenAccess TRUE -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.relation.journalResearchArea Chemistry; Energy & Fuels; Materials Science; Physics -
dc.type.docType Article; Early Access -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor cathode-solid electrolyte interface -
dc.subject.keywordAuthor chemo-mechanical degradation -
dc.subject.keywordAuthor electrolyte additives -
dc.subject.keywordAuthor organic coating layers -
dc.subject.keywordAuthor oxidative reactions -
dc.subject.keywordAuthor solid-state batteries -
dc.subject.keywordPlus INTERFACE STABILITY -
dc.subject.keywordPlus LITHIUM -
dc.subject.keywordPlus PRINCIPLES -
dc.subject.keywordPlus PHOSPHATE -
dc.subject.keywordPlus EXPANSION -
dc.subject.keywordPlus SURFACE -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.