File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.number 2 -
dc.citation.startPage 127 -
dc.citation.title ASTROPHYSICAL JOURNAL -
dc.citation.volume 929 -
dc.contributor.author Mtchedlidze, Salome -
dc.contributor.author Domínguez-Fernández, Paola -
dc.contributor.author Du, Xiaolong -
dc.contributor.author Brandenburg, Axel -
dc.contributor.author Kahniashvili, Tina -
dc.contributor.author O’Sullivan, Shane -
dc.contributor.author Schmidt, Wolfram -
dc.contributor.author Brüggen, Marcus -
dc.date.accessioned 2023-12-21T14:15:58Z -
dc.date.available 2023-12-21T14:15:58Z -
dc.date.created 2022-05-09 -
dc.date.issued 2022-04 -
dc.description.abstract Primordial magnetic fields (PMFs) could explain the large-scale magnetic fields present in the universe. Inflation and phase transitions in the early universe could give rise to such fields with unique characteristics. We investigate the magnetohydrodynamic evolution of these magnetogenesis scenarios with cosmological simulations. We evolve inflation-generated magnetic fields either as (i) uniform (homogeneous) or as (ii) scale-invariant stochastic fields, and phase-transition-generated ones either as (iii) helical or as (iv) nonhelical fields from the radiation-dominated epoch. We find that the final distribution of magnetic fields in the simulated cosmic web shows a dependence on the initial strength and the topology of the seed field. Thus, the observed field configuration retains information on the initial conditions at the moment of the field generation. If detected, PMF observations would open a new window for indirect probes of the early universe. The differences between the competing models are revealed on the scale of galaxy clusters, bridges, as well as filaments and voids. The distinctive spectral evolution of different seed fields produces imprints on the correlation length today. We discuss how the differences between rotation measures from highly ionized regions can potentially be probed with forthcoming surveys. -
dc.identifier.bibliographicCitation ASTROPHYSICAL JOURNAL, v.929, no.2, pp.127 -
dc.identifier.doi 10.3847/1538-4357/ac5960 -
dc.identifier.issn 0004-637X -
dc.identifier.scopusid 2-s2.0-85129615913 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/62214 -
dc.identifier.url https://iopscience.iop.org/article/10.3847/1538-4357/ac5960 -
dc.identifier.wosid 000786370200001 -
dc.language 영어 -
dc.publisher IOP PUBLISHING LTD -
dc.title Evolution of Primordial Magnetic Fields during Large-scale Structure Formation -
dc.type Article -
dc.description.isOpenAccess TRUE -
dc.relation.journalWebOfScienceCategory Astronomy & Astrophysics -
dc.relation.journalResearchArea Astronomy & Astrophysics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.subject.keywordPlus ILLUSTRISTNG SIMULATIONS -
dc.subject.keywordPlus TURBULENCE -
dc.subject.keywordPlus PHASE -
dc.subject.keywordPlus INTERGALACTIC MEDIUM -
dc.subject.keywordPlus GALAXY FORMATION -
dc.subject.keywordPlus CLUSTER -
dc.subject.keywordPlus GENERATION -
dc.subject.keywordPlus DYNAMO -
dc.subject.keywordPlus MHD -
dc.subject.keywordPlus FARADAY-ROTATION -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.