File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.title ELECTROCHEMISTRY COMMUNICATIONS -
dc.citation.volume 140 -
dc.contributor.author Jo, Minki -
dc.contributor.author Sim, Soojin -
dc.contributor.author Kim, Juhyeong -
dc.contributor.author Oh, Pilgun -
dc.contributor.author Son, Yoonkook -
dc.date.accessioned 2023-12-21T13:49:38Z -
dc.date.available 2023-12-21T13:49:38Z -
dc.date.created 2023-03-06 -
dc.date.issued 2022-07 -
dc.description.abstract Silicon, one of the most promising anodes, has been facing challenges to improve continuous increased electrode expansion during the cycles, resulting in a deteriorated conducting network between the particles from the accelerated side reactions with the electrolytes and inferior long-term cycle performance of the graphite counterpart for practical application. Herein, we demonstrated an easy and scalable synthesis of Si nanoparticles in the carbon-coated and interconnected alpha-FeSi2 matrix where alpha-FeSi2 acts as a buffer matrix for the expansion of adjacent Si, and the uniformly-coated carbon surface layer on the alpha-FeSi2 matrix enhances conductivity and reduces the side reaction of electrolyte and structural degradation. Our results reveal that the alpha-FeSi2/Si/carbon (FSC) exhibits better electrochemical properties in the lithium-ion cell compared to alpha-FeSi2/Si (FS), benchmarking samples of alpha-FeSi2/Si (BM-FS) and carbon nanotubes (CNTs) grown FS (BM-FS/CNT). The FSC anode in the full cell with the areal capacity and electrode density of anodes of 2.25 mAh cm(-2) and 1.7 g cc(-1), respectively, exhibited quite a comparable capacity retention to a graphite counterpart, showing 83 % at a rate of 0.7C charging /0.5C discharging rate between 4.4 and 3 V after 200 cycles. -
dc.identifier.bibliographicCitation ELECTROCHEMISTRY COMMUNICATIONS, v.140 -
dc.identifier.doi 10.1016/j.elecom.2022.107335 -
dc.identifier.issn 1388-2481 -
dc.identifier.scopusid 2-s2.0-85135310669 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/62202 -
dc.identifier.wosid 000891239800005 -
dc.language 영어 -
dc.publisher ELSEVIER SCIENCE INC -
dc.title Practical implantation of Si nanoparticles in Carbon-coated alpha-FeSi2 matrix for Lithium-ion batteries -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Electrochemistry -
dc.relation.journalResearchArea Electrochemistry -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor alpha-FeSi2 anode -
dc.subject.keywordAuthor Si nanoparticles -
dc.subject.keywordAuthor Li-ion batteries -
dc.subject.keywordAuthor Full cell -
dc.subject.keywordAuthor Carbon coating -
dc.subject.keywordPlus CORE-SHELL NANOWIRES -
dc.subject.keywordPlus ANODE MATERIAL -
dc.subject.keywordPlus FACILE SYNTHESIS -
dc.subject.keywordPlus SILICON ANODE -
dc.subject.keywordPlus LI -
dc.subject.keywordPlus ELECTROLYTE -
dc.subject.keywordPlus PERFORMANCE -
dc.subject.keywordPlus COMPOSITE -
dc.subject.keywordPlus INSERTION -
dc.subject.keywordPlus NANOCOMPOSITE -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.