File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

김귀용

Kim, Kwiyong
Redox and electrochemistry advancing clean technologies Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 124 -
dc.citation.number 1 -
dc.citation.startPage 120 -
dc.citation.title CHEMSUSCHEM -
dc.citation.volume 11 -
dc.contributor.author Kim, Kwiyong -
dc.contributor.author Lee, Seung Jong -
dc.contributor.author Kim, Dong-Yeon -
dc.contributor.author Yoo, Chung-Yul -
dc.contributor.author Choi, Jang Wook -
dc.contributor.author Kim, Jong-Nam -
dc.contributor.author Woo, Youngmin -
dc.contributor.author Yoon, Hyung Chul -
dc.contributor.author Han, Jong-In -
dc.date.accessioned 2023-12-21T21:12:04Z -
dc.date.available 2023-12-21T21:12:04Z -
dc.date.created 2023-02-13 -
dc.date.issued 2018-01 -
dc.description.abstract Lithium-mediated reduction of dinitrogen is a promising method to evade electron-stealing hydrogen evolution, a critical challenge which limits faradaic efficiency (FE) and thus hinders the success of traditional protic-solvent-based ammonia electro-synthesis. A viable implementation of the lithium-mediated pathway using lithium-ion conducting glass ceramics involves i)lithium deposition, ii)nitridation, and iii)ammonia formation. Ammonia was successfully synthesized from molecular nitrogen and water, yielding a maximum FE of 52.3%. With an ammonia synthesis rate comparable to previously reported approaches, the fairly high FE demonstrates the possibility of using this nitrogen fixation strategy as a substitute for firmly established, yet exceedingly complicated and expensive technology, and in so doing represents a next-generation energy storage system. -
dc.identifier.bibliographicCitation CHEMSUSCHEM, v.11, no.1, pp.120 - 124 -
dc.identifier.doi 10.1002/cssc.201701975 -
dc.identifier.issn 1864-5631 -
dc.identifier.scopusid 2-s2.0-85034779123 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/62104 -
dc.identifier.wosid 000419685900010 -
dc.language 영어 -
dc.publisher WILEY-V C H VERLAG GMBH -
dc.title Electrochemical Synthesis of Ammonia from Water and Nitrogen: A Lithium-Mediated Approach Using Lithium-Ion Conducting Glass Ceramics -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Green & Sustainable Science & Technology -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor ammonia -
dc.subject.keywordAuthor faradic efficiency -
dc.subject.keywordAuthor lithium -
dc.subject.keywordAuthor lithium nitrides -
dc.subject.keywordAuthor nitrogen fixation -
dc.subject.keywordPlus ATMOSPHERIC-PRESSURE -
dc.subject.keywordPlus AMBIENT-TEMPERATURE -
dc.subject.keywordPlus CARBON -
dc.subject.keywordPlus N-2 -
dc.subject.keywordPlus CATALYSTS -
dc.subject.keywordPlus AIR -
dc.subject.keywordPlus BATTERY -
dc.subject.keywordPlus STORAGE -
dc.subject.keywordPlus NH3 -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.