File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

김귀용

Kim, Kwiyong
Redox and electrochemistry advancing clean technologies Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.number 1 -
dc.citation.startPage 6554 -
dc.citation.title NATURE COMMUNICATIONS -
dc.citation.volume 12 -
dc.contributor.author Kim, Kwiyong -
dc.contributor.author Raymond, Darien -
dc.contributor.author Candeago, Riccardo -
dc.contributor.author Su, Xiao -
dc.date.accessioned 2023-12-21T15:06:51Z -
dc.date.available 2023-12-21T15:06:51Z -
dc.date.created 2023-02-13 -
dc.date.issued 2021-11 -
dc.description.abstract Molecularly-selective metal separations are key to sustainable recycling of Li-ion battery electrodes. However, metals with close reduction potentials present a fundamental challenge for selective electrodeposition, especially for critical elements such as cobalt and nickel. Here, we demonstrate the synergistic combination of electrolyte control and interfacial design to achieve molecular selectivity for cobalt and nickel during potential-dependent electrodeposition. Concentrated chloride allows for the speciation control via distinct formation of anionic cobalt chloride complex (CoCl42-), while maintaining nickel in the cationic form ([Ni(H2O)(5)Cl](+)). Furthermore, functionalizing electrodes with a positively charged polyelectrolyte (i.e., poly(diallyldimethylammonium) chloride) changes the mobility of CoCl42- by electrostatic stabilization, which tunes cobalt selectivity depending on the polyelectrolyte loading. This strategy is applied for the multicomponent metal recovery from commercially-sourced lithium nickel manganese cobalt oxide electrodes. We report a final purity of 96.4 +/- 3.1% and 94.1 +/- 2.3% for cobalt and nickel, respectively. Based on a technoeconomic analysis, we identify the limiting costs arising from the background electrolyte, and provide a promising outlook of selective electrodeposition as an efficient separation approach for battery recycling. Recovery of metals from Li-ion batteries is a key for sustainability. Here the authors demonstrate a Li-ion cell recycling process via selective electrochemical Co and Ni recovery by controlling the electrode interface and the electrolyte. -
dc.identifier.bibliographicCitation NATURE COMMUNICATIONS, v.12, no.1, pp.6554 -
dc.identifier.doi 10.1038/s41467-021-26814-7 -
dc.identifier.issn 2041-1723 -
dc.identifier.scopusid 2-s2.0-85119016594 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/62065 -
dc.identifier.wosid 000718060500010 -
dc.language 영어 -
dc.publisher NATURE PORTFOLIO -
dc.title Selective cobalt and nickel electrodeposition for lithium-ion battery recycling through integrated electrolyte and interface control -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Multidisciplinary Sciences -
dc.relation.journalResearchArea Science & Technology - Other Topics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus ELECTROMOTIVE FORCE SERIES -
dc.subject.keywordPlus HYDROMETALLURGICAL PROCESSES -
dc.subject.keywordPlus VALUABLE METALS -
dc.subject.keywordPlus CHLORIDE -
dc.subject.keywordPlus EXTRACTION -
dc.subject.keywordPlus RECOVERY -
dc.subject.keywordPlus SEPARATION -
dc.subject.keywordPlus ELECTROSEPARATION -
dc.subject.keywordPlus NANOPARTICLES -
dc.subject.keywordPlus ADSORPTION -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.