BROWSE

Related Researcher

Author's Photo

Im, Jungho
Intelligent Remote sensing and geospatial Information Science (IRIS) Lab
Research Interests
  • Remote sensing, Artificial Intelligence, Geospatial modeling, Disaster monitoring and management, Climate change

ITEM VIEW & DOWNLOAD

Remote sensing of sea surface salinity: challenges and research directions

Cited 0 times inthomson ciCited 0 times inthomson ci
Title
Remote sensing of sea surface salinity: challenges and research directions
Author
Kim, Young JunHan, DaehyeonJang, EunnaIm, JunghoSung, Taejun
Issue Date
2023-01
Publisher
TAYLOR & FRANCIS LTD
Citation
GISCIENCE & REMOTE SENSING, v.60, no.1, pp.2166377
Abstract
Salinity is a key parameter that affects the surface, deep circulations, and heat transport of oceans. Sea surface salinity (SSS) represents the salinity at the ocean surface and impacts atmosphere - ocean interactions and vertical ocean circulation. To monitor SSS, three passive microwave radiometers with an L-band (1.4 GHz) have been launched since 2009. The scientific need for SSS retrieval and estimation has grown in recent years; however, the operational retrieval of SSS via satellite remote sensing still faces significant challenges. This study provides a review of satellite-based SSS retrieval methods and guidelines to encourage future research. This paper introduces satellite-derived SSS research trends and summarizes the representative SSS satellite sensors and their retrieval methods. The limitations and challenges of satellite-derived SSS are then discussed. The errors from the retrieval algorithms, discrepancies in the spatio-temporal scales of in situ and remote sensing, and limitations of the satellite-derived SSS are then detailed. Finally, our paper provides suggestions for the future directions of SSS remote sensing in five ways: mitigation of measurement errors, improvement of currently available SSS products, enhancement of the usage of in situ data, reconstruction of three-dimensional salinity information, and synergetic uses of multi-satellite missions.
URI
https://scholarworks.unist.ac.kr/handle/201301/62000
DOI
10.1080/15481603.2023.2166377
ISSN
1548-1603
Appears in Collections:
UEE_Journal Papers
Files in This Item:
There are no files associated with this item.

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU