WearPut : Designing Dexterous Wearable Input based on the Characteristics of Human Finger Motions

Cited 0 times inthomson ciCited 0 times inthomson ci
WearPut : Designing Dexterous Wearable Input based on the Characteristics of Human Finger Motions
Gil, Hyunjae
Oakley, Ian
Human Computer Interaction; Dexterous Wearable Input; Smartwatch Input; HMD Input
Issue Date
Ulsan National Institute of Science and Technology
Powerful microchips for computing and networking allow a wide range of wearable devices to be miniaturized with high fidelity and availability. In particular, the commercially successful smartwatches placed on the wrist drive market growth by sharing the role of smartphones and health management. The emerging Head Mounted Displays (HMDs) for Augmented Reality (AR) and Virtual Reality (VR) also impact various application areas in video games, education, simulation, and productivity tools. However, these powerful wearables have challenges in interaction with the inevitably limited space for input and output due to the specialized form factors for fitting the body parts. To complement the constrained interaction experience, many wearable devices still rely on other large form factor devices (e.g., smartphones or hand-held controllers). Despite their usefulness, the additional devices for interaction can constrain the viability of wearable devices in many usage scenarios by tethering users' hands to the physical devices. This thesis argues that developing novel Human-Computer interaction techniques for the specialized wearable form factors is vital for wearables to be reliable standalone products. This thesis seeks to address the issue of constrained interaction experience with novel interaction techniques by exploring finger motions during input for the specialized form factors of wearable devices. The several characteristics of the finger input motions are promising to enable increases in the expressiveness of input on the physically limited input space of wearable devices. First, the input techniques with fingers are prevalent on many large form factor devices (e.g., touchscreen or physical keyboard) due to fast and accurate performance and high familiarity. Second, many commercial wearable products provide built-in sensors (e.g., touchscreen or hand tracking system) to detect finger motions. This enables the implementation of novel interaction systems without any additional sensors or devices. Third, the specialized form factors of wearable devices can create unique input contexts while the fingers approach their locations, shapes, and components. Finally, the dexterity of fingers with a distinctive appearance, high degrees of freedom, and high sensitivity of joint angle perception have the potential to widen the range of input available with various movement features on the surface and in the air. Accordingly, the general claim of this thesis is that understanding how users move their fingers during input will enable increases in the expressiveness of the interaction techniques we can create for resource-limited wearable devices. This thesis demonstrates the general claim by providing evidence in various wearable scenarios with smartwatches and HMDs. First, this thesis explored the comfort range of static and dynamic touch input with angles on the touchscreen of smartwatches. The results showed the specific comfort ranges on variations in fingers, finger regions, and poses due to the unique input context that the touching hand approaches a small and fixed touchscreen with a limited range of angles. Then, finger region-aware systems that recognize the flat and side of the finger were constructed based on the contact areas on the touchscreen to enhance the expressiveness of angle-based touch input. In the second scenario, this thesis revealed distinctive touch profiles of different fingers caused by the unique input context for the touchscreen of smartwatches. The results led to the implementation of finger identification systems for distinguishing two or three fingers. Two virtual keyboards with 12 and 16 keys showed the feasibility of touch-based finger identification that enables increases in the expressiveness of touch input techniques. In addition, this thesis supports the general claim with a range of wearable scenarios by exploring the finger input motions in the air. In the third scenario, this thesis investigated the motions of in-air finger stroking during unconstrained in-air typing for HMDs. The results of the observation study revealed details of in-air finger motions during fast sequential input, such as strategies, kinematics, correlated movements, inter-fingerstroke relationship, and individual in-air keys. The in-depth analysis led to a practical guideline for developing robust in-air typing systems with finger stroking. Lastly, this thesis examined the viable locations of in-air thumb touch input to the virtual targets above the palm. It was confirmed that fast and accurate sequential thumb touch can be achieved at a total of 8 key locations with the built-in hand tracking system in a commercial HMD. Final typing studies with a novel in-air thumb typing system verified increases in the expressiveness of virtual target selection on HMDs. This thesis argues that the objective and subjective results and novel interaction techniques in various wearable scenarios support the general claim that understanding how users move their fingers during input will enable increases in the expressiveness of the interaction techniques we can create for resource-limited wearable devices. Finally, this thesis concludes with thesis contributions, design considerations, and the scope of future research works, for future researchers and developers to implement robust finger-based interaction systems on various types of wearable devices.
Department of Biomedical Engineering (Human Factors Engineering)
Go to Link
Appears in Collections:
Files in This Item:
666726.pdf Download

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record


  • mendeley


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.