File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

송현곤

Song, Hyun-Kon
eclat: electrochemistry lab of advanced technology
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Shifting Target Reaction from Oxygen Reduction to Superoxide Disproportionation by Tuning Isomeric Configuration of Quinone Derivative as Redox Mediator for Lithium-Oxygen Batteries

Author(s)
Kim, JonghakLee, JeonginJeong, JinhyeonHwang, ChihyunSong, Hyun-Kon
Issued Date
2022-02
DOI
10.1021/acsami.1c22621
URI
https://scholarworks.unist.ac.kr/handle/201301/61159
Fulltext
https://pubs.acs.org/doi/10.1021/acsami.1c22621
Citation
ACS APPLIED MATERIALS & INTERFACES, v.14, no.7, pp.9066 - 9072
Abstract
Quinones having a fully conjugated cyclic dione structure have been used as redox mediators in electrochemistry. 2,5-Ditert-butyl-1,4-benzoquinone (DBBQ or DB-p-BQ) as a para-quinone derivative is one of the representative discharge redox mediators for facilitating the oxygen reduction reaction (ORR) kinetics in lithium-oxygen batteries (LOBs). Herein, we presented that the redox activity of DB-p-BQ for electron mediation was possibly used for facilitating superoxide disproportionation reaction (SODR) by tuning the isomeric config-uration of the carbonyl groups of the substituted quinone to change its reduction potentials. First, we expected a molecule having its reduction potential between oxygen/superoxide at 2.75 V versus Li/Li+ and superoxide/peroxide at 3.17 V to play a role of the SODR catalyst by transferring an electron from one superoxide (O-2(-)) to another superoxide to generate dioxygen (O2) and peroxide (O-2(2-)). By changing the isomeric configuration from para (DB-p-BQ) to ortho (DB-o-BQ), the reduction potential of the first electron transfer (Q/Q(-)) of the ditert-butyl benzoquinone shifted positively to the potential range of the SODR catalyst. The electrocatalytic SODR-promoting functionality of DB-o-BQ kept the reactive superoxide concentration below a harmful level to suppress superoxide-triggered side reaction, improving the cycling durability of LOBs, which was not achieved by the para form. The second electron transfer process (Q(-)/Q(2-)) of the DB-o-BQ, even if the same process of the para form was not used for facilitating ORR, played a role of mediating electrons between electrode and oxygen like the Q/Q(-) process of the para form. The ORR-promoting functionality of the ortho form increased the LOB discharge capacity and reduced the ORR overpotential.
Publisher
AMER CHEMICAL SOC
ISSN
1944-8244
Keyword (Author)
lithium-oxygen batteriessuperoxide disproportionationredox mediatorsuperoxide dismutasecatalyst
Keyword
REACTION-MECHANISMDISCHARGEROLES

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.