File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.startPage 121517 -
dc.citation.title APPLIED CATALYSIS B-ENVIRONMENTAL -
dc.citation.volume 314 -
dc.contributor.author Kim, Kyeong Joon -
dc.contributor.author Lim, Chaesung -
dc.contributor.author Bae, Kyung Taek -
dc.contributor.author Lee, Jong Jun -
dc.contributor.author Oh, Mi Young -
dc.contributor.author Kim, Hyung Jun -
dc.contributor.author Kim, Hyunmin -
dc.contributor.author Kim, Guntae -
dc.contributor.author Shin, Tae Ho -
dc.contributor.author Han, Jeong Woo -
dc.contributor.author Lee, Kang Taek -
dc.date.accessioned 2023-12-21T13:38:56Z -
dc.date.available 2023-12-21T13:38:56Z -
dc.date.created 2022-06-30 -
dc.date.issued 2022-10 -
dc.description.abstract The reducibility of B-site elements in perovskite (ABO3) structures is one of the paramount factors that promote the in-situ exsolution of metallic nanocatalysts, and the phase transition of the support to a more stable structure under solid oxide cell (SOC) fuel electrode operating conditions. Herein, we develop a highly catalytically active and durable perovskite-based fuel electrode material & mdash;La0.6Sr0.4Co0.15Fe0.8Pd0.05O3-delta (LSCFP)& mdash;for reversible SOCs. The LSCFP material under the fuel electrode condition is fully transformed into a stable Ruddlesden-Popper phase decorated by bimetallic Co-Fe nanocatalysts. The SOC with LSCFP fuel electrode yielded outstanding performances in both fuel cell (2.00 W cm-2) and electrolysis cell (2.23 A/cm(2) at 1.3 V) modes at 850 ?C, with remarkable reversible-cyclic stability. These results clearly demonstrate that the novel LSCFP capable of concurrent phase transition and bimetallic exsolution in the reducing condition is a highly prospective candidate as a bifunctional fuel electrode for reversible SOCs. -
dc.identifier.bibliographicCitation APPLIED CATALYSIS B-ENVIRONMENTAL, v.314, pp.121517 -
dc.identifier.doi 10.1016/j.apcatb.2022.121517 -
dc.identifier.issn 0926-3373 -
dc.identifier.scopusid 2-s2.0-85130928200 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/61137 -
dc.identifier.wosid 000809944600002 -
dc.language 영어 -
dc.publisher ELSEVIER -
dc.title Concurrent promotion of phase transition and bimetallic nanocatalyst exsolution in perovskite oxides driven by Pd doping to achieve highly active bifunctional fuel electrodes for reversible solid oxide electrochemical cells -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Engineering, Environmental; Engineering, Chemical -
dc.relation.journalResearchArea Chemistry; Engineering -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Reversible solid oxide cells -
dc.subject.keywordAuthor Phase transition -
dc.subject.keywordAuthor In-situ exsolution -
dc.subject.keywordAuthor Bimetallic nanocatalysts -
dc.subject.keywordAuthor Electrochemical performances -
dc.subject.keywordPlus IN-SITU GROWTH -
dc.subject.keywordPlus HIGH-PERFORMANCE -
dc.subject.keywordPlus ALLOY NANOPARTICLES -
dc.subject.keywordPlus STEAM ELECTROLYSIS -
dc.subject.keywordPlus ANODE MATERIAL -
dc.subject.keywordPlus OXIDATION -
dc.subject.keywordPlus CATALYSTS -
dc.subject.keywordPlus CATHODE -
dc.subject.keywordPlus CO -
dc.subject.keywordPlus PALLADIUM -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.