File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.number 34 -
dc.citation.startPage 2203720 -
dc.citation.title ADVANCED SCIENCE -
dc.citation.volume 9 -
dc.contributor.author Kim, Sang-Woo -
dc.contributor.author Lee, Kwon-Hyung -
dc.contributor.author Lee, Yong-Hyeok -
dc.contributor.author Youe, Won-Jae -
dc.contributor.author Gwon, Jae-Gyoung -
dc.contributor.author Lee, Sang-Young -
dc.date.accessioned 2023-12-21T13:15:21Z -
dc.date.available 2023-12-21T13:15:21Z -
dc.date.created 2022-11-07 -
dc.date.issued 2022-12 -
dc.description.abstract Despite the ever-increasing demand for transparent power sources in wireless optoelectronics, most of them have still relied on synthetic chemicals, thus limiting their versatile applications. Here, a class of transparent nanocellulose paper microsupercapacitors (TNP-MSCs) as a beyond-synthetic-material strategy is demonstrated. Onto semi-interpenetrating polymer network-structured, thiol-modified transparent nanocellulose paper, a thin layer of silver nanowire and a conducting polymer (chosen as a pseudocapacitive electrode material) are consecutively introduced through microscale-patterned masks (which are fabricated by electrohydrodynamic jet printing) to produce a transparent conductive electrode (TNP-TCE) with planar interdigitated structure. This TNP-TCE, in combination with solid-state gel electrolytes, enables on-demand (in-series/in-parallel) cell configurations in a single body of TNP-MSC. Driven by this structural uniqueness and scalable microfabrication, the TNP-MSC exhibits improvements in optical transparency (T = 85%), areal capacitance (0.24 mF cm(-2)), controllable voltage (7.2 V per cell), and mechanical flexibility (origami airplane), which exceed those of previously reported transparent MSCs based on synthetic chemicals. -
dc.identifier.bibliographicCitation ADVANCED SCIENCE, v.9, no.34, pp.2203720 -
dc.identifier.doi 10.1002/advs.202203720 -
dc.identifier.issn 2198-3844 -
dc.identifier.scopusid 2-s2.0-85139998756 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/60697 -
dc.identifier.wosid 000869585800001 -
dc.language 영어 -
dc.publisher WILEY -
dc.title Transparent and Multi-Foldable Nanocellulose Paper Microsupercapacitors -
dc.type Article -
dc.description.isOpenAccess TRUE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science -
dc.type.docType Article; Early Access -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor biopolymer -
dc.subject.keywordAuthor foldable electronics -
dc.subject.keywordAuthor nanocellulose -
dc.subject.keywordAuthor supercapacitors -
dc.subject.keywordAuthor transparent power source -
dc.subject.keywordPlus CELLULOSE -
dc.subject.keywordPlus SUPERCAPACITORS -
dc.subject.keywordPlus ELECTRODE -
dc.subject.keywordPlus RESISTANCE -
dc.subject.keywordPlus HYDROGEL -
dc.subject.keywordPlus FILMS -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.