Full metadata record
DC Field | Value | Language |
---|---|---|
dc.citation.number | 34 | - |
dc.citation.startPage | 2203720 | - |
dc.citation.title | ADVANCED SCIENCE | - |
dc.citation.volume | 9 | - |
dc.contributor.author | Kim, Sang-Woo | - |
dc.contributor.author | Lee, Kwon-Hyung | - |
dc.contributor.author | Lee, Yong-Hyeok | - |
dc.contributor.author | Youe, Won-Jae | - |
dc.contributor.author | Gwon, Jae-Gyoung | - |
dc.contributor.author | Lee, Sang-Young | - |
dc.date.accessioned | 2023-12-21T13:15:21Z | - |
dc.date.available | 2023-12-21T13:15:21Z | - |
dc.date.created | 2022-11-07 | - |
dc.date.issued | 2022-12 | - |
dc.description.abstract | Despite the ever-increasing demand for transparent power sources in wireless optoelectronics, most of them have still relied on synthetic chemicals, thus limiting their versatile applications. Here, a class of transparent nanocellulose paper microsupercapacitors (TNP-MSCs) as a beyond-synthetic-material strategy is demonstrated. Onto semi-interpenetrating polymer network-structured, thiol-modified transparent nanocellulose paper, a thin layer of silver nanowire and a conducting polymer (chosen as a pseudocapacitive electrode material) are consecutively introduced through microscale-patterned masks (which are fabricated by electrohydrodynamic jet printing) to produce a transparent conductive electrode (TNP-TCE) with planar interdigitated structure. This TNP-TCE, in combination with solid-state gel electrolytes, enables on-demand (in-series/in-parallel) cell configurations in a single body of TNP-MSC. Driven by this structural uniqueness and scalable microfabrication, the TNP-MSC exhibits improvements in optical transparency (T = 85%), areal capacitance (0.24 mF cm(-2)), controllable voltage (7.2 V per cell), and mechanical flexibility (origami airplane), which exceed those of previously reported transparent MSCs based on synthetic chemicals. | - |
dc.identifier.bibliographicCitation | ADVANCED SCIENCE, v.9, no.34, pp.2203720 | - |
dc.identifier.doi | 10.1002/advs.202203720 | - |
dc.identifier.issn | 2198-3844 | - |
dc.identifier.scopusid | 2-s2.0-85139998756 | - |
dc.identifier.uri | https://scholarworks.unist.ac.kr/handle/201301/60697 | - |
dc.identifier.wosid | 000869585800001 | - |
dc.language | 영어 | - |
dc.publisher | WILEY | - |
dc.title | Transparent and Multi-Foldable Nanocellulose Paper Microsupercapacitors | - |
dc.type | Article | - |
dc.description.isOpenAccess | TRUE | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary | - |
dc.relation.journalResearchArea | Chemistry; Science & Technology - Other Topics; Materials Science | - |
dc.type.docType | Article; Early Access | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordAuthor | biopolymer | - |
dc.subject.keywordAuthor | foldable electronics | - |
dc.subject.keywordAuthor | nanocellulose | - |
dc.subject.keywordAuthor | supercapacitors | - |
dc.subject.keywordAuthor | transparent power source | - |
dc.subject.keywordPlus | CELLULOSE | - |
dc.subject.keywordPlus | SUPERCAPACITORS | - |
dc.subject.keywordPlus | ELECTRODE | - |
dc.subject.keywordPlus | RESISTANCE | - |
dc.subject.keywordPlus | HYDROGEL | - |
dc.subject.keywordPlus | FILMS | - |
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Tel : 052-217-1404 / Email : scholarworks@unist.ac.kr
Copyright (c) 2023 by UNIST LIBRARY. All rights reserved.
ScholarWorks@UNIST was established as an OAK Project for the National Library of Korea.