BROWSE

Related Researcher

Author's Photo

Im, Jungho
Intelligent Remote sensing and geospatial Information Science (IRIS) Lab
Research Interests
  • Remote sensing, Artificial Intelligence, Geospatial modeling, Disaster monitoring and management, Climate change

ITEM VIEW & DOWNLOAD

Development of Mid-range Forecast Models of Forest Fire Risk Using Machine Learning

Cited 0 times inthomson ciCited 0 times inthomson ci
Title
Development of Mid-range Forecast Models of Forest Fire Risk Using Machine Learning
Other Titles
기계학습 기반의 산불위험 중기예보 모델 개발
Author
Park, SuminSon, BokyungIm, JunghoKang, YoojinKwon, ChungeunKim, Sungyong
Issue Date
2022-10
Publisher
대한원격탐사학회
Citation
Korean Journal of Remote Sensing, v.38, no.5, pp.781 - 791
Abstract
It is crucial to provide forest fire risk forecast information to minimize forest fire-related losses. In this research, forecast models of forest fire risk at a mid-range (with lead times up to 7 days) scale were developed considering past, present and future conditions (i.e., forest fire risk, drought, and weather) through random forest machine learning over South Korea. The models were developed using weather forecast data from the Global Data Assessment and Prediction System, historical and current Fire Risk Index (FRI) information, and environmental factors (i.e., elevation, forest fire hazard index, and drought index). Three schemes were examined: scheme 1 using historical values of FRI and drought index, scheme 2 using historical values of FRI only, and scheme 3 using the temporal patterns of FRI and drought index. The models showed high accuracy (Pearson correlation coefficient >0.8, relative root mean square error <10%), regardless of the lead times, resulting in a good agreement with actual forest fire events. The use of the historical FRI itself as an input variable rather than the trend of the historical FRI produced more accurate results, regardless of the drought index used.
URI
https://scholarworks.unist.ac.kr/handle/201301/60478
DOI
10.7780/kjrs.2022.38.5.2.10
ISSN
1225-6161
Appears in Collections:
UEE_Journal Papers
Files in This Item:
Development of Mid-range Forecast Models of Forest Fire Risk Using Machine Learning.pdf Download

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU