Related Researcher

Author's Photo

Cho, Kyung Hwa
Water-Environmental Informatics Lab (WEIL)
Research Interests
  • Water Quality Monitoring and Modeling, Water Treatment Process Modeling

Comparison of different machine learning algorithms to estimate liquid level for bioreactor management

DC Field Value Language Yu, Sung Il ko Rhee, Chaeyoung ko Cho, Kyung Hwa ko Shin, Seung Gu ko 2022-12-15T08:52:09Z - 2022-12-11 ko 2023-04 ko
dc.identifier.citation ENVIRONMENTAL ENGINEERING RESEARCH, v.28, no.2, pp.220037 ko
dc.identifier.issn 1226-1025 ko
dc.identifier.uri -
dc.description.abstract Estimating the liquid level in an anaerobic digester can be disturbed by its closedness, bubbles and scum formation, and the inhomogeneity of the digestate. In our previous study, a soft-sensor approach using seven pressure meters has been proposed as an alternative for real-time liquid level estimation. Here, machine learning techniques were used to improve the estimation accuracy and optimize the number of sensors required in this approach. Four algorithms, multiple linear regression (MLR), artificial neural network (ANN), random forest (RF), and support vector machine (SVM) with radial basis function kernel were compared for this purpose. All models outperformed the cubic model developed in the previous study, among which the ANN and RF models performed the best. Variable importance analysis suggested that the pressure readings from the top (in the headspace) were the most significant, while the other pressure meters showed varying significance levels depending on the model type. The sensor that experienced both headspace and liquid phases depending on the level variation incurred a higher error than other sensors. The results showed that the ML techniques can provide an effective tool to estimate digester liquid levels by optimizing the number of sensors and reducing the error rate. ko
dc.language 영어 ko
dc.publisher 대한환경공학회 ko
dc.title Comparison of different machine learning algorithms to estimate liquid level for bioreactor management ko
dc.type ARTICLE ko
dc.identifier.wosid 000930578400014 ko
dc.type.rims ART ko
dc.identifier.doi 10.4491/eer.2022.037 ko
Appears in Collections:
UEE_Journal Papers

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show simple item record


  • mendeley


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.