File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

김광수

Kim, Kwang S.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 3116 -
dc.citation.number 20 -
dc.citation.startPage 2937 -
dc.citation.title MATERIALS CHEMISTRY FRONTIERS -
dc.citation.volume 6 -
dc.contributor.author Jana, Atanu -
dc.contributor.author Myung, Chang Woo -
dc.contributor.author Sree, Vijaya Gopalan -
dc.contributor.author Kim, Kwang S. -
dc.date.accessioned 2023-12-21T13:38:02Z -
dc.date.available 2023-12-21T13:38:02Z -
dc.date.created 2022-10-04 -
dc.date.issued 2022-10 -
dc.description.abstract Highly efficient, low-cost, and eco-friendly fluorescent bulk materials showing the quantum confinement effect with both upconversion (UC) and multiexciton generation (MEG) are promising for optoelectronic devices. Yet, these combined phenomena have not been realized in bulk organic-inorganic single crystals (SCs). MEG by low-energy photons remains a critical challenge for generating multiexcitons. Herein, we report non-toxic, zero-dimensional (0D) bulk organic-inorganic hybrid, green light-emitting SCs of [Me3NPh](2)MnBr4 (1) (Ph: phenyl), which show both UC and MEG along with a long lifetime (400 mu s). This is supported by many-body theory predicting a large exciton binding energy (483 meV), upon excitation by band-gap energy (2.62 eV) photons. The MEG in 1 contributes to the photoluminescence (PL) quantum yield (QY) of up to 189%, the highest among any 0D hybrid or other single crystals. Our findings will pave the way to design and synthesize lead-free 0D hybrid materials having UC and MEG properties, improving the performances of solar cells, LEDs, and other optoelectronic devices. -
dc.identifier.bibliographicCitation MATERIALS CHEMISTRY FRONTIERS, v.6, no.20, pp.2937 - 3116 -
dc.identifier.doi 10.1039/d2qm00447j -
dc.identifier.issn 2052-1537 -
dc.identifier.scopusid 2-s2.0-85139842236 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/59720 -
dc.identifier.url https://pubs.rsc.org/en/content/articlelanding/2022/QM/D2QM00447J -
dc.identifier.wosid 000854209800001 -
dc.language 영어 -
dc.publisher ROYAL SOC CHEMISTRY -
dc.title Upconversion and multiexciton generation in organic Mn(II) complex boost the quantum yield to > 100% -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Chemistry; Materials Science -
dc.type.docType Article; Early Access -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus MULTIPLE EXCITON GENERATION -
dc.subject.keywordPlus METAL HALIDE PEROVSKITES -
dc.subject.keywordPlus EXCEEDING 100-PERCENT -
dc.subject.keywordPlus EFFICIENCY -
dc.subject.keywordPlus SILICON -
dc.subject.keywordPlus MICRODISKS -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.