BROWSE

Related Researcher

Author's Photo

Ding, Feng
IBS - Center for Multidimensional Carbon Materials (CMCM)
Research Interests
  • Theoretical methods development for materials studies.
  • The formation mechanism of various carbon materials, from fullerene to carbon nanotube and graphene.
  • Kinetics and thermodynamics of materials growth and etching.
  • The structure, properties and fundamentals of nanomaterials.
  • The experimental synthesis of carbon nanotubes.

ITEM VIEW & DOWNLOAD

Multilayer graphene sunk growth on Cu(111) surface

Cited 0 times inthomson ciCited 0 times inthomson ci
Title
Multilayer graphene sunk growth on Cu(111) surface
Author
Dai, XinyueMitchell, IzaacKim, SungkyunAn, HaoDing, Feng
Issue Date
2022-10
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Citation
CARBON, v.199, pp.233 - 240
Abstract
The controllable growth of multilayer graphene is a challenging research topic. Prior results show graphene adlayers can grow beneath pre-existing graphene layers on a Cu(111). The conventional inverted-wedding-cake (IWC) model used to describe this incurs an energy disadvantage due to deformation in the overlying graphene. We propose an alternative theoretical model, the sunk growth mode, for understanding multilayer graphene growth on Cu substrates. Extensive density functional theory (DFT) calculations show that multilayer graphene grown via this sunk mode is energetically favourable compared to the on-terrace growth mode for Cu(111). These results reveal that graphene underlayers tend to grow in a sunk growth mode, minimizing deformation in the overlayers, reducing deformation energy. Further density functional tight binding-molecular dynamic (DFTBMD) simulations on Cu(111) substrates yield sunken structures consistent with our sunk growth mode. Moreover, AFM investigations of experimentally grown multilayer graphene on polycrystaline Cu show that while friction data indicates multiple graphene edges in the sample, the topological height measurement indicates flat graphitic sheets, further confirming our sunk growth mode. This discovery provides a novel and more reasonable model for the "underlayer" growth of multilayer graphene and can be extended to a general theory for the multilayer graphene growth on various substrates.
URI
https://scholarworks.unist.ac.kr/handle/201301/59703
DOI
10.1016/j.carbon.2022.07.064
ISSN
0008-6223
Appears in Collections:
MSE_Journal Papers
Files in This Item:
There are no files associated with this item.

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU