File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

손창희

Sohn, Chang Hee
Laboratory for Unobtainable Functional Oxides
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.number 1 -
dc.citation.startPage 95 -
dc.citation.title NPJ QUANTUM MATERIALS -
dc.citation.volume 7 -
dc.contributor.author Kim, Soyeun -
dc.contributor.author Backes, Steffen -
dc.contributor.author Yoon, Hyojin -
dc.contributor.author Kim, Woojin -
dc.contributor.author Sohn, Chang Hee -
dc.contributor.author Biermann, Silke -
dc.contributor.author Noh, Tae Won -
dc.contributor.author Park, Se Young -
dc.date.accessioned 2023-12-21T13:40:59Z -
dc.date.available 2023-12-21T13:40:59Z -
dc.date.created 2022-10-04 -
dc.date.issued 2022-09 -
dc.description.abstract Materials displaying metal-insulator transitions (MITs) as a function of external parameters such as temperature, pressure, or composition are most intriguing from the fundamental point of view and also hold high promise for applications. Vanadium dioxide (VO2) is one of the most prominent examples of MIT having prospective applications ranging from intelligent coatings, infrared sensing, or imaging, to Mott memory and neuromorphic devices. The key aspects conditioning possible applications are the controllability and reversibility of the transition. Here we present an intriguing MIT in hydrogenated vanadium dioxide, HxVO2. The transition relies on an increase of the electron occupancy through hydrogenation on the transition metal vanadium, driving the system insulating by a hybrid of two distinct MIT mechanisms. The insulating phase observed in HVO2 with a nominal d2 electronic configuration contrasts with other rutile d2 systems, most of which are metallic. Using spectroscopic tools and state-of-the-art many-body electronic structure calculations, our investigation reveals a correlation-enhanced Peierls and a Mott transition taking place in an orbital-selective manner cooperate to stabilize an insulating phase. The identification of the hybrid mechanism for MIT controlled by hydrogenation opens the way to radically design strategies for future correlated oxide devices by controlling phase reversibly while maintaining high crystallinity. -
dc.identifier.bibliographicCitation NPJ QUANTUM MATERIALS, v.7, no.1, pp.95 -
dc.identifier.doi 10.1038/s41535-022-00505-y -
dc.identifier.issn 2397-4648 -
dc.identifier.scopusid 2-s2.0-85138768397 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/59586 -
dc.identifier.wosid 000857492600001 -
dc.language 영어 -
dc.publisher NATURE PUBLISHING GROUP -
dc.title Orbital-selective Mott and Peierls transition in HxVO2 -
dc.type Article -
dc.description.isOpenAccess TRUE -
dc.relation.journalWebOfScienceCategory Materials Science, Multidisciplinary;Quantum Science & Technology;Physics, Applied;Physics, Condensed Matter -
dc.relation.journalResearchArea Materials Science;Physics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus METAL-INSULATOR-TRANSITION -
dc.subject.keywordPlus VANADIUM DIOXIDE -
dc.subject.keywordPlus PHASE-TRANSITION -
dc.subject.keywordPlus OPTICAL-PROPERTIES -
dc.subject.keywordPlus ROOM-TEMPERATURE -
dc.subject.keywordPlus VO2 NANOWIRES -
dc.subject.keywordPlus STABILIZATION -
dc.subject.keywordPlus HYDROGENATION -
dc.subject.keywordPlus MODULATION -
dc.subject.keywordPlus WINDOWS -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.