File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

이현욱

Lee, Hyun-Wook
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 6636 -
dc.citation.number 16 -
dc.citation.startPage 6631 -
dc.citation.title NANO LETTERS -
dc.citation.volume 22 -
dc.contributor.author Kim, Yeongae -
dc.contributor.author Yeom, Su Jeong -
dc.contributor.author Yoo, Jinkyoung -
dc.contributor.author Yun, Jeonghun -
dc.contributor.author Lee, Hyun-Wook -
dc.contributor.author Lee, Seok Woo -
dc.date.accessioned 2023-12-21T13:46:19Z -
dc.date.available 2023-12-21T13:46:19Z -
dc.date.created 2022-08-30 -
dc.date.issued 2022-08 -
dc.description.abstract During the lithation of silicon anodes, the solid-state diffusion of lithium into LixSi follows the Arrhenius law, the resulting morphology and fracture behavior are determined by the silicon anode operation temperature. Here, we reveal the temperature dependence of the lithiation mechanics of crystalline silicon nanopillars (SiNPs) via microscopic observations of the anisotropic growth and fracture behavior. We fabricated 1D SiNP structures with various orientations (< 100 >, < 110 >, and < 111 >) as working electrodes and operated them at temperatures ranging from -20 to 40 degrees C. The lithiation of crystalline silicon at low temperatures exhibited preferential volume expansion along < 110 > and decreased fracture resistance. Furthermore, low temperatures caused the catastrophic fracture of amorphous silicon after the second lithiation. Our findings demonstrate the importance of silicon anode temperature control to prevent mechanical fracture during the cycle of lithium-ion batteries in harsh environments (e.g., electric vehicles in winter). -
dc.identifier.bibliographicCitation NANO LETTERS, v.22, no.16, pp.6631 - 6636 -
dc.identifier.doi 10.1021/acs.nanolett.2c01946 -
dc.identifier.issn 1530-6984 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/59219 -
dc.identifier.wosid 000841280900001 -
dc.language 영어 -
dc.publisher AMER CHEMICAL SOC -
dc.title Temperature-Dependent Fracture Resistance of Silicon Nanopillars during Electrochemical Lithiation -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.type.docType Article; Early Access -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor silicon anode -
dc.subject.keywordAuthor operating temperature -
dc.subject.keywordAuthor anisotropic expansion -
dc.subject.keywordAuthor silicon fracture -
dc.subject.keywordPlus CRYSTALLINE SILICON -
dc.subject.keywordPlus AMORPHOUS-SILICON -
dc.subject.keywordPlus ION BATTERIES -
dc.subject.keywordPlus ANODES -
dc.subject.keywordPlus PERFORMANCE -
dc.subject.keywordPlus SIZE -
dc.subject.keywordPlus NANOPARTICLES -
dc.subject.keywordPlus ELECTRODES -
dc.subject.keywordPlus EXPANSION -
dc.subject.keywordPlus INSERTION -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.