File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

DingFeng

Ding, Feng
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.number 28 -
dc.citation.startPage 2200956 -
dc.citation.title ADVANCED MATERIALS -
dc.citation.volume 34 -
dc.contributor.author Lyu, Bosai -
dc.contributor.author Chen, Jiajun -
dc.contributor.author Lou, Shuo -
dc.contributor.author Li, Can -
dc.contributor.author Qiu, Lu -
dc.contributor.author Ouyang, Wengen -
dc.contributor.author Xie, Jingxu -
dc.contributor.author Mitchell, Izaac -
dc.contributor.author Wu, Tongyao -
dc.contributor.author Deng, Aolin -
dc.contributor.author Hu, Cheng -
dc.contributor.author Zhou, Xianliang -
dc.contributor.author Shen, Peiyue -
dc.contributor.author Ma, Saiqun -
dc.contributor.author Wu, Zhenghan -
dc.contributor.author Watanabe, Kenji -
dc.contributor.author Taniguchi, Takashi -
dc.contributor.author Wang, Xiaoqun -
dc.contributor.author Liang, Qi -
dc.contributor.author Jia, Jinfeng -
dc.contributor.author Urbakh, Michael -
dc.contributor.author Hod, Oded -
dc.contributor.author Ding, Feng -
dc.contributor.author Wang, Shiyong -
dc.contributor.author Shi, Zhiwen -
dc.date.accessioned 2023-12-21T14:06:53Z -
dc.date.available 2023-12-21T14:06:53Z -
dc.date.created 2022-06-30 -
dc.date.issued 2022-07 -
dc.description.abstract Graphene nanoribbons (GNRs) with widths of a few nanometers are promising candidates for future nanoelectronic applications due to their structurally tunable bandgaps, ultrahigh carrier mobilities, and exceptional stability. However, the direct growth of micrometer-long GNRs on insulating substrates, which is essential for the fabrication of nanoelectronic devices, remains an immense challenge. Here, the epitaxial growth of GNRs on an insulating hexagonal boron nitride (h-BN) substrate through nanoparticle-catalyzed chemical vapor deposition is reported. Ultranarrow GNRs with lengths of up to 10 mu m are synthesized. Remarkably, the as-grown GNRs are crystallographically aligned with the h-BN substrate, forming 1D moire superlattices. Scanning tunneling microscopy reveals an average width of 2 nm and a typical bandgap of approximate to 1 eV for similar GNRs grown on conducting graphite substrates. Fully atomistic computational simulations support the experimental results and reveal a competition between the formation of GNRs and carbon nanotubes during the nucleation stage, and van der Waals sliding of the GNRs on the h-BN substrate throughout the growth stage. This study provides a scalable, single-step method for growing micrometer-long narrow GNRs on insulating substrates, thus opening a route to explore the performance of high-quality GNR devices and the fundamental physics of 1D moire superlattices. -
dc.identifier.bibliographicCitation ADVANCED MATERIALS, v.34, no.28, pp.2200956 -
dc.identifier.doi 10.1002/adma.202200956 -
dc.identifier.issn 0935-9648 -
dc.identifier.scopusid 2-s2.0-85131290429 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/58974 -
dc.identifier.url https://onlinelibrary.wiley.com/doi/10.1002/adma.202200956 -
dc.identifier.wosid 000806991000001 -
dc.language 영어 -
dc.publisher WILEY-V C H VERLAG GMBH -
dc.title Catalytic Growth of Ultralong Graphene Nanoribbons on Insulating Substrates -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary;Chemistry, Physical;Nanoscience & Nanotechnology;Materials Science, Multidisciplinary;Physics, Applied;Physics, Condensed Matter -
dc.relation.journalResearchArea Chemistry;Science & Technology - Other Topics;Materials Science;Physics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor carbon nanotubes -
dc.subject.keywordAuthor catalytic growth -
dc.subject.keywordAuthor graphene nanoribbons -
dc.subject.keywordAuthor hexagonal boron nitride -
dc.subject.keywordAuthor moire superlattices -
dc.subject.keywordAuthor superlubricity -
dc.subject.keywordPlus CARBON NANOTUBES -
dc.subject.keywordPlus QUANTUM TRANSPORT -
dc.subject.keywordPlus DIRAC FERMIONS -
dc.subject.keywordPlus BEHAVIOR -
dc.subject.keywordPlus STATE -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.