Lateral flow assays (LFA) enable development of portable and rapid diagnostic kits; however, their capacity to detect low levels of disease markers remains poor. Here, we report a highly sensitive pregnancy test kit as a proof of concept, by combining brush-type ligand-coated quantum beads (B-type QBs) and nanobody, which can control the antibody orientation and enhance sensitivity. The brush-type ligand provided excellent dispersion stability and high-binding capacity toward antibody. Fc-binding nanobody increased the antigen-binding capacity of conjugated antibodies on the B-type QBs. To facilitate convenient acquisition of the LFA results, we developed a smartphone-based reader with a 3D-printed optical imaging module, and validated the diagnostic performance of the sensing platform. The pregnancy test kit achieved a 5.1 pg mL−1 limit of detection, corresponding to the levels for early-stage detection of heart disease and malaria. Our LFA application can potentially be expanded to diagnosis other diseases by simply changing the antibody pair in the kit.