File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

조재필

Cho, Jaephil
Nano Energy Storage Material Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 679 -
dc.citation.number 4 -
dc.citation.startPage 672 -
dc.citation.title GREEN ENERGY & ENVIRONMENT -
dc.citation.volume 7 -
dc.contributor.author Li, Guangkai -
dc.contributor.author Jang, Haeseong -
dc.contributor.author Li, Zijian -
dc.contributor.author Wang, Jia -
dc.contributor.author Ji, Xuqiang -
dc.contributor.author Kim, Min Gyu -
dc.contributor.author Liu, Xien -
dc.contributor.author Cho, Jaephil -
dc.date.accessioned 2023-12-21T13:48:08Z -
dc.date.available 2023-12-21T13:48:08Z -
dc.date.created 2022-06-10 -
dc.date.issued 2022-08 -
dc.description.abstract For high-efficiency NH3 synthesis via ambient-condition electrohydrogenation of inert N2, it is pivotal to ingeniously design an active electrocatalyst with multiple features of abundant surfacial deficiency, good conductivity and large surface area. Here, oxygen-deficient SnO2 nanoparticles encapsulated by ultrathin carbon layer (d-SnO2@C) are developed by hydrothermal deposition coupled with annealing process, as promising catalysts for ambient electrocatalytic N2 reduction. d-SnO2@C exhibits high activity and excellent selectivity for electrocatalytic conversion of N2 to NH3 in acidic electrolytes, with Faradic efficiency as high as 12.7% at −0.15 V versus the reversible hydrogen electrode (RHE) and large NH3 yield rate of 16.68 μg h−1 mgcat−1 at −0.25 V vs. RHE in 0.1 mol L−1 HCl. Benefiting from the structural superiority of enhanced charge transfer efficiency and optimized surface states, d-SnO2@C also achieves excellent long-term stability. -
dc.identifier.bibliographicCitation GREEN ENERGY & ENVIRONMENT, v.7, no.4, pp.672 - 679 -
dc.identifier.doi 10.1016/j.gee.2020.11.004 -
dc.identifier.issn 2096-2797 -
dc.identifier.scopusid 2-s2.0-85103252851 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/58663 -
dc.identifier.url https://www.sciencedirect.com/science/article/pii/S2468025720301977 -
dc.identifier.wosid 000803021400001 -
dc.language 영어 -
dc.publisher KEAI PUBLISHING LTD -
dc.title Oxygen-deficient SnO2 nanoparticles with ultrathin carbon shell for efficient electrocatalytic N2 reduction -
dc.type Article -
dc.description.isOpenAccess TRUE -
dc.relation.journalWebOfScienceCategory Chemistry, Physical;Green & Sustainable Science & Technology;Energy & Fuels;Engineering, Chemical -
dc.relation.journalResearchArea Chemistry;Science & Technology - Other Topics;Energy & Fuels;Engineering -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Ambient conditions -
dc.subject.keywordAuthor Electrocatalysts -
dc.subject.keywordAuthor N2 reduction reaction -
dc.subject.keywordAuthor NH3 synthesis -
dc.subject.keywordAuthor SnO2 -
dc.subject.keywordPlus AMMONIA-SYNTHESIS -
dc.subject.keywordPlus DINITROGEN -
dc.subject.keywordPlus FIXATION -
dc.subject.keywordPlus NITROGENASE -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.