File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

정후영

Jeong, Hu Young
UCRF Electron Microscopy group
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.number 49 -
dc.citation.startPage 2103632 -
dc.citation.title SMALL -
dc.citation.volume 17 -
dc.contributor.author Lee, Jegon -
dc.contributor.author Adiga, Prajwal -
dc.contributor.author Lee, Sang A. -
dc.contributor.author Nam, Seung Hyun -
dc.contributor.author Ju, Hyeon-Ah -
dc.contributor.author Jung, Min-Hyoung -
dc.contributor.author Jeong, Hu Young -
dc.contributor.author Kim, Young-Min -
dc.contributor.author Wong, Cindy -
dc.contributor.author Elzein, Radwan -
dc.contributor.author Addou, Rafik -
dc.contributor.author Stoerzinger, Kelsey A. -
dc.contributor.author Choi, Woo Seok -
dc.date.accessioned 2023-12-21T14:52:58Z -
dc.date.available 2023-12-21T14:52:58Z -
dc.date.created 2021-11-18 -
dc.date.issued 2021-12 -
dc.description.abstract Electrocatalytic reactions are known to take place at the catalyst/electrolyte interface. Whereas recent studies of size-dependent activity in nanoparticles and thickness-dependent activity of thin films imply that the sub-surface layers of a catalyst can contribute to the catalytic activity as well, most of these studies consider actual modification of the surfaces. In this study, the role of catalytically active sub-surface layers was investigated by employing atomic-scale thickness control of the La0.7Sr0.3MnO3 (LSMO) films and heterostructures, without altering the catalyst/electrolyte interface. The activity toward the oxygen evolution reaction (OER) shows a non-monotonic thickness dependence in the LSMO films and a continuous screening effect in LSMO/SrRuO3 heterostructures. The observation leads to the definition of an "electrochemically-relevant depth" on the order of 10 unit cells. This study on the electrocatalytic activity of epitaxial heterostructures provides new insight in designing efficient electrocatalytic nanomaterials and core-shell architectures. -
dc.identifier.bibliographicCitation SMALL, v.17, no.49, pp.2103632 -
dc.identifier.doi 10.1002/smll.202103632 -
dc.identifier.issn 1613-6810 -
dc.identifier.scopusid 2-s2.0-85117527919 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/58459 -
dc.identifier.url https://onlinelibrary.wiley.com/doi/10.1002/smll.202103632 -
dc.identifier.wosid 000709889700001 -
dc.language 영어 -
dc.publisher WILEY-V C H VERLAG GMBH -
dc.title Contribution of the Sub-Surface to Electrocatalytic Activity in Atomically Precise La0.7Sr0.3MnO3 Heterostructures -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.type.docType Article; Early Access -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor atomic scale precision -
dc.subject.keywordAuthor electrocatalysis -
dc.subject.keywordAuthor epitaxial oxide thin film -
dc.subject.keywordAuthor oxygen evolution reaction -
dc.subject.keywordAuthor sub-surface layer -
dc.subject.keywordPlus OXYGEN EVOLUTION REACTION -
dc.subject.keywordPlus SIZE-DEPENDENT ACTIVITY -
dc.subject.keywordPlus PHASE-TRANSITIONS -
dc.subject.keywordPlus CHARGE-TRANSFER -
dc.subject.keywordPlus LATTICE OXYGEN -
dc.subject.keywordPlus SURFACE-AREA -
dc.subject.keywordPlus PEROVSKITE -
dc.subject.keywordPlus REDUCTION -
dc.subject.keywordPlus CATALYSIS -
dc.subject.keywordPlus IMPACT -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.