File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.startPage 128671 -
dc.citation.title JOURNAL OF HAZARDOUS MATERIALS -
dc.citation.volume 432 -
dc.contributor.author Cho, Young Ju -
dc.contributor.author Kwon, Yong Jung -
dc.contributor.author Jin, Sunghwan -
dc.contributor.author Choi, Hyeunseok -
dc.contributor.author Lee, Jung-Hoon -
dc.contributor.author Yang, Seung-Min -
dc.contributor.author Choi, Sun-Woo -
dc.contributor.author Jeong, Young Kyu -
dc.date.accessioned 2023-12-21T14:09:20Z -
dc.date.available 2023-12-21T14:09:20Z -
dc.date.created 2022-05-03 -
dc.date.issued 2022-06 -
dc.description.abstract In humid conditions, water vapor can easily neutralize the surface active sites of metal oxide sensors, leading to a lowering in the sensitivity of the gas sensor and a resultant inaccurate signal in practical applications. Herein, we present a new hybrid sensor by introducing a two-dimensional calcium silicate (CS) nanosheet as a water trapping layer in SnO2 nanowires. Unlike the heavily wrinkled and aggregated morphology of conventional CS nanosheets, our nanosheet in the hybrid material is ultrathin and flat. Moreover, it was grown in the empty spaces between the spider-web-like networks of SnO2 nanowires without covering the nanowire surface. These two morphological features improve moisture trapping with minimal reduction in the active sensing area. Consequently, stable and sensitive gas detection under humid conditions was achieved in this hybrid sensor. The superior humidity-independent sensing is ascribed to the preferential adsorption of water molecules on hydroscopic CS nanosheets through the hydrogen bond. Based on density functional theory calculations, we determined that the improved gas response is driven by the additional formation of oxygen vacancy in SnO2 due to the diffusion of aliovalent Ca ions from the CS nanosheet. -
dc.identifier.bibliographicCitation JOURNAL OF HAZARDOUS MATERIALS, v.432, pp.128671 -
dc.identifier.doi 10.1016/j.jhazmat.2022.128671 -
dc.identifier.issn 0304-3894 -
dc.identifier.scopusid 2-s2.0-85126530556 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/58370 -
dc.identifier.url https://linkinghub.elsevier.com/retrieve/pii/S0304389422004605 -
dc.identifier.wosid 000782127600006 -
dc.language 영어 -
dc.publisher ELSEVIER -
dc.title Two-Dimensional calcium silicate nanosheets for trapping atmospheric water molecules in humidity-immune gas sensors -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Engineering, Environmental; Environmental Sciences -
dc.relation.journalResearchArea Engineering; Environmental Sciences & Ecology -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Calcium silicate nanosheet -
dc.subject.keywordAuthor Hybrid gas sensor -
dc.subject.keywordAuthor Humidity independence -
dc.subject.keywordAuthor SnO2 nanowires -
dc.subject.keywordAuthor Water-trapping layer -
dc.subject.keywordPlus SNO2 NANOWIRES -
dc.subject.keywordPlus HYDRATE -
dc.subject.keywordPlus NANOCOMPOSITES -
dc.subject.keywordPlus TOBERMORITE -
dc.subject.keywordPlus IMPROVEMENT -
dc.subject.keywordPlus ATTACHMENT -
dc.subject.keywordPlus DENSITY -
dc.subject.keywordPlus MODEL -
dc.subject.keywordPlus LAYER -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.