Polymethyl Methacrylate as an Interlayer Between the Halide Perovskite and Copper Phthalocyanine Layers for Stable and Efficient Perovskite Solar Cells
Cited 0 times in
Cited 0 times in
- Title
- Polymethyl Methacrylate as an Interlayer Between the Halide Perovskite and Copper Phthalocyanine Layers for Stable and Efficient Perovskite Solar Cells
- Author
- Kim, Hyeonwoo; Lee, Kyoung Su; Paik, Min Jae; Lee, Do Yoon; Lee, Seung‐Un; Choi, Eunyoung; Yun, Jae Sung; Seok, Sang Il
- Issue Date
- 2022-03
- Publisher
- John Wiley & Sons Ltd.
- Citation
- ADVANCED FUNCTIONAL MATERIALS, v.32, no.13, pp.2110473
- Abstract
- The use of inexpensive, highly efficient, and long-term stable hole-transporting layers (HTLs) while facilitating the fabrication process has become a critical issue for PSC commercialization. Among organic HTLs, copper phthalocyanine (CuPc) has been increasingly studied owing to its low cost and excellent thermal stability. Nevertheless, CuPc has a low energy level in the conduction band, resulting in low efficiency due to a poor electron barrier. In this study, an efficient and stable PSC is fabricated by combining CuPc with an ultrathin poly(methyl methacrylate) (PMMA) interlayer, which is deposited on a [(FAPbI(3))(0.95)(MAPbBr(3))(0.05)] absorption layer (here, FAPbI(3) and MAPbBr(3) denote formamidinium lead triiodide and methylammonium lead tribromide, respectively). PMMA in perovskite has been found to reduce perovskite surface defects and series resistance as well as the electronic barrier to HTL. The optimum concentration of PMMA allows for the fabrication of the PSC with a PCE of 21.3%, which is the highest PCE for PSCs featuring metal phthalocyanines as the HTL reported to date. The stability of the encapsulated PSC exceeds 80% after 760 h at 85 degrees C under 85% RH conditions.
- URI
- https://scholarworks.unist.ac.kr/handle/201301/57660
- DOI
- 10.1002/adfm.202110473
- ISSN
- 1616-301X
- Appears in Collections:
- ECHE_Journal Papers
- Files in This Item:
- There are no files associated with this item.
can give you direct access to the published full text of this article. (UNISTARs only)
Show full item record
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.