File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

조한희

Cho, Han-Hee
Optoelectronic Nanomaterials Engineering Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 2105 -
dc.citation.number 6 -
dc.citation.startPage 2096 -
dc.citation.title MACROMOLECULES -
dc.citation.volume 49 -
dc.contributor.author Kang, Tae Eui -
dc.contributor.author Choi, Joonhyeong -
dc.contributor.author Cho, Han-Hee -
dc.contributor.author Yoon, Sung Cheol -
dc.contributor.author Kim, Bumjoon J. -
dc.date.accessioned 2023-12-22T00:06:49Z -
dc.date.available 2023-12-22T00:06:49Z -
dc.date.created 2022-03-03 -
dc.date.issued 2016-03 -
dc.description.abstract The backbone composition of conjugated copolymers is of great importance in determining the conjugated structure and intermolecular assembly and in manipulating their optical, electrochemical, and electronic properties. However, limited attention has been directed at controlling the backbone composition of donor acceptor (D-A) type low bandgap polymers. Herein, we developed a series of D-A random copolymers (P(BDTT-r-DPP)) composed of different compositions of electron-rich (D) thienyl-substituted benzo[1,2-b:4,5-b']dithiophene (BDTT) and electron-deficient (A) pyrrolo[3,4-c]pyrrole-1,4-dione (DPP). The optical and electrical properties of D-A random copolymers could be controlled by tuning the ratios of BDTT to DPP (4:1, 2:1, 1:1, 1:2, and 1:4) in the polymer backbone; an increase in BDTT resulted in increased absorption in the range of 400-600 nm and a lower-lying highest occupied molecular orbital energy level, while a higher proportion of DPP induced stronger absorption in the range of 700-900 nm. The P(BDTT-r-DPP) copolymer with a D:A ratio of 2:1 produced the highest power conversion efficiency (PCE) of 5.63% in the polymer solar cells (PSCs), which outperformed the D-A alternating copolymer, P(BDTT-alt-DPP) (1:1)-based PSCs (PCE = 5.03%), because of the improved light absorption and open-circuit voltage. Thus, we highlight the importance of developing random copolymers with controlled D:A compositions for optimizing their optoelectronic properties and performances of PSCs. Also, we compared the polymer packing structure and the electrical properties between the P(BDTT-r-DPP) and P(BDTT-alt-DPP) copolymers and developed a quantitative understanding of the effect of the D:A monomer sequence on the structural, electrical, and photovoltaic properties of the D-A copolymers. -
dc.identifier.bibliographicCitation MACROMOLECULES, v.49, no.6, pp.2096 - 2105 -
dc.identifier.doi 10.1021/acs.macromol.5b02772 -
dc.identifier.issn 0024-9297 -
dc.identifier.scopusid 2-s2.0-84962106821 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/57337 -
dc.identifier.wosid 000372856300013 -
dc.language 영어 -
dc.publisher AMER CHEMICAL SOC -
dc.title Donor-Acceptor Random versus Alternating Copolymers for Efficient Polymer Solar Cells: Importance of Optimal Composition in Random Copolymers -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Polymer Science -
dc.relation.journalResearchArea Polymer Science -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus OPEN-CIRCUIT VOLTAGE -
dc.subject.keywordPlus POWER CONVERSION EFFICIENCY -
dc.subject.keywordPlus BAND-GAP POLYMERS -
dc.subject.keywordPlus D-A POLYMER -
dc.subject.keywordPlus PHOTOVOLTAIC PERFORMANCE -
dc.subject.keywordPlus SEMI-RANDOM -
dc.subject.keywordPlus CONJUGATED POLYMERS -
dc.subject.keywordPlus ORGANIC PHOTOVOLTAICS -
dc.subject.keywordPlus PROCESSING ADDITIVES -
dc.subject.keywordPlus SINGLE-JUNCTION -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.