File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

오재은

Oh, Jae Eun
Nano-AIMS Structural Materials Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Mechanical and Durability Properties of Cementless Concretes Made Using Three Types of CaO-Activated GGBFS Binders

Author(s)
Yum, Woo SungYu, JuanJeon, DonghoSong, HaeminSim, SungwonKim, Do HoonOh, Jae Eun
Issued Date
2022-01
DOI
10.3390/ma15010271
URI
https://scholarworks.unist.ac.kr/handle/201301/57305
Fulltext
https://www.mdpi.com/1996-1944/15/1/271
Citation
MATERIALS, v.15, no.1, pp.271
Abstract
This study examined the mechanical and durability properties of CaO-activated ground-granulated blast-furnace slag (GGBFS) concretes made with three different additives (CaCl2, Ca(HCOO)(2), and Ca(NO3)(2)) and compared their properties to the concrete made with 100% Ordinary Portland Cement (OPC). All concrete mixtures satisfied targeted air content and slump ranges but exhibited significantly different mechanical and durability properties. The CaO-activated GGBFS concretes showed different strength levels, depending on the type of additive. The added CaCl2 was the most effective, but Ca(NO3)(2) was the least effective at increasing mechanical strength in the CaO-activated GGBFS system. The OPC concrete showed the most excellent freezing-thawing resistance in the durability test, but only the CaO-activated GGBFS concrete with CaCl2 exhibited relatively similar resistance. In addition, the chemical resistance was significantly dependent on the type of acid solution and the type of binder. The OPC concrete had the best resistance in the HCl solution, while all CaO-activated GGBFS concretes had relatively low resistances. However, in the H2SO4 solution, all CaO-activated GGBFS concretes had better resistance than the OPC concrete. All concrete with sulfate ions had ettringite before immersion. However, when they were immersed in HCl solution, ettringite tended to decrease, and gypsum was generated. Meanwhile, the CaO-activated GGBFS concrete with CaCl2 did not change the type of reaction product, possibly due to the absence of ettringite and Ca(OH)(2). When immersed in an H2SO4 solution, ettringite decreased, and gypsum increased in all concrete. In addition, the CaO-activated concrete with CaCl2 had a considerable amount of gypsum; it seemed that the dissolved C-S-H and calcite, due to the low pH, likely produced Ca2+ ions, and gypsum formed from the reaction between Ca2+ and H2SO4.
Publisher
MDPI
ISSN
1996-1944
Keyword (Author)
CaO-activationauxiliary activatorGGBFSchemical resistancefreezingthawing
Keyword
RICE HUSK ASHFLY-ASHSILICA FUMESLAGRESISTANCESTRENGTHPERFORMANCEMETAKAOLINMODULUSCALCIUM

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.