File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

이재성

Lee, Jae Sung
Eco-friendly Catalysis & Energy Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.startPage 163689 -
dc.citation.title JOURNAL OF ALLOYS AND COMPOUNDS -
dc.citation.volume 901 -
dc.contributor.author Kim, Young Kyeong -
dc.contributor.author Jun, Woo Tae -
dc.contributor.author Youn, Duck Hyun -
dc.contributor.author Lee, Jae Sung -
dc.date.accessioned 2023-12-21T14:19:12Z -
dc.date.available 2023-12-21T14:19:12Z -
dc.date.created 2022-02-11 -
dc.date.issued 2022-04 -
dc.description.abstract The amorphous NiFeOx(OH)(y) is synthesized on Fe, Ni, and Cu foam substrates to study the effects of the metal substrates on activity and stability for the electrochemical oxygen evolution reaction (OER) from water. The metal substrate for NiFeOx(OH)(y) catalyst does not merely perform the physical role of loading the catalyst, but actively participates in the activation process of the catalyst phase by controlling the charge transfer during the OER. The Ni foam substrate is found to be the best to make NiFeOx(OH)(y)/Ni foam the most active and the most stable electrode for OER in an alkaline medium due to its multiple functions. The nickel substrate forms the thinnest oxide layer on its surface to allow facile charge transfer, and stabilizes the M-O-x(OH)(y) structure of high oxidation degree of metals and balanced O-x/(OH)(y) responsible for excellent OER performance. The high intrinsic corrosion resistance of Ni and its ability to stabilize a thick layer of M-O-x(OH)(y) structure can also minimize the metal dissolution during the OER and provide superior long-term stability. Finally, oxidation of the Ni substrate itself results in more NiOOH phase formation to achieve an optimum NiFe composition. (C) 2022 Elsevier B.V. All rights reserved. -
dc.identifier.bibliographicCitation JOURNAL OF ALLOYS AND COMPOUNDS, v.901, pp.163689 -
dc.identifier.doi 10.1016/j.jallcom.2022.163689 -
dc.identifier.issn 0925-8388 -
dc.identifier.scopusid 2-s2.0-85122611024 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/57247 -
dc.identifier.url https://www.sciencedirect.com/science/article/pii/S0925838822000809?via%3Dihub -
dc.identifier.wosid 000749784000005 -
dc.language 영어 -
dc.publisher ELSEVIER SCIENCE SA -
dc.title Metal substrates activate NiFe(oxy)hydroxide catalysts for efficient oxygen evolution reaction in alkaline media -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering -
dc.relation.journalResearchArea Chemistry; Materials Science; Metallurgy & Metallurgical Engineering -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor NiFe(oxy)hydroxide -
dc.subject.keywordAuthor Substrate effect -
dc.subject.keywordAuthor Metal foam -
dc.subject.keywordAuthor Oxygen evolution reaction -
dc.subject.keywordAuthor Water splitting -
dc.subject.keywordPlus MEMBRANE WATER ELECTROLYSIS -
dc.subject.keywordPlus DOUBLE HYDROXIDE -
dc.subject.keywordPlus XPS SPECTRA -
dc.subject.keywordPlus OXIDE LAYER -
dc.subject.keywordPlus ELECTROCATALYSTS -
dc.subject.keywordPlus FE -
dc.subject.keywordPlus NICKEL -
dc.subject.keywordPlus IRON -
dc.subject.keywordPlus NI -
dc.subject.keywordPlus OXIDATION -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.