File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

윤애정

Yoon, Aejung
Advanced Thermal Energy Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Experimental and theoretical studies on oscillation frequencies of liquid slugs in micro pulsating heat pipes

Author(s)
Yoon, AejungKim, Sung Jin
Issued Date
2019-02
DOI
10.1016/j.enconman.2018.11.060
URI
https://scholarworks.unist.ac.kr/handle/201301/57191
Citation
ENERGY CONVERSION AND MANAGEMENT, v.181, pp.48 - 58
Abstract
The purpose of this study is to experimentally examine the oscillation frequencies of liquid slugs in multi-turn micro pulsating heat pipes (MPHPs) and to perform a theoretical study for better understanding of the experimental results. A series of experiments on silicon-based MPHPs with different overall lengths of 40, 50, and 60 mm are performed at different heat inputs in a bottom-heating mode. Ethanol is used as a working fluid at a filling ratio of 55%. From a spectral analysis on flow visualization data, dominant frequencies of the MPHPs are identified for each experimental condition. To theoretically estimate the dominant frequencies, a 'non-adiabatic' vapor spring liquid mass model is proposed: The spring action of a vapor plug is linked not only to a volume variation but also to a mass variation of a non-adiabatic vapor plug via phase change processes. A distinguishing feature of this model is that it is capable of handling the mass variation of a vapor plug due to phase change processes. Based on the model, a set of parameters related to the oscillation frequency is explicitly determined: the number of turns, channel length, filling ratio, liquid density, vapor pressure and specific heat ratio. A closed-form correlation of the oscillation frequency is proposed and found to be accurate in predicting the experimental data to within 15%. It is also shown that the oscillation frequency is over-predicted by more than 100% of the experimental data when the spring-mass model is used without including the mass variation due to phase change processes.
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
ISSN
0196-8904
Keyword (Author)
Pulsating heat pipeFlow visualizationSpectral analysisTheoretical modelOscillation frequency
Keyword
THERMAL PERFORMANCESTART-UPFLOWVISUALIZATIONFABRICATION

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.