BROWSE

Related Researcher

Author's Photo

Yoon, Eisung
Fusion and Plasma Application Research Laboratory (FPL)
Research Interests

ITEM VIEW & DOWNLOAD

Development of a gyrokinetic hyperbolic solver based on discontinuous Galerkin method in tokamak geometry

DC Field Value Language
dc.contributor.author Jo, Gahyung ko
dc.contributor.author Kwon, Jae-Min ko
dc.contributor.author Seo, Janghoon ko
dc.contributor.author Yoon, Eisung ko
dc.date.available 2021-12-31T00:09:21Z -
dc.date.created 2021-12-30 ko
dc.date.issued 2022-04 ko
dc.identifier.citation COMPUTER PHYSICS COMMUNICATIONS, v.273, pp.108265 ko
dc.identifier.issn 0010-4655 ko
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/55642 -
dc.description.abstract A hyperbolic solver is developed for the gyrokinetic equation in tokamak geometry. Aiming a whole device modeling of fusion plasma surrounded by first walls of tokamak device, an unstructured spatial mesh is introduced. The discontinuous Galerkin (DG) method is used to discretize the gyrokinetic equation on the mesh and test various numerical elements for the discretization. Based on the conservations of physical quantities such as mass, kinetic energy, and toroidal canonical angular momentum in an axisymmetric configuration of toroidal plasma, we investigate the effects of basis functions for the DG method on the numerical solutions. With proper choices of the basis functions and spatial grid resolutions, the conservations of the key physical quantities are shown to be satisfied nearly to machine accuracies in the simplified circular magnetic geometry. Even in realistic tokamak geometry with machine wall boundaries, it is shown that a good conservation property can be demonstrated if the flux across boundaries of a test domain is carefully accounted for. Also, the invariance of the canonical Maxwellian distribution function in time is well satisfied with the developed solver. The effect of weighting functions for the basis is investigated too. Overall, the Maxwellian weighted basis shows a similar conservation property with the polynomial basis. On the other hand, the Maxwellian weighted basis shows better performance in resolving small scale structures in velocity space, which can be utilized to set up an efficient basis set to simulate fine structures with less computational costs. The parallelization of the newly developed solver is also reported. Employing MPI for the parallelization, the solver shows good performances up to a few thousand CPU cores. ko
dc.language 영어 ko
dc.publisher ELSEVIER ko
dc.title Development of a gyrokinetic hyperbolic solver based on discontinuous Galerkin method in tokamak geometry ko
dc.type ARTICLE ko
dc.identifier.scopusid 2-s2.0-85122094362 ko
dc.identifier.wosid 000754669600002 ko
dc.type.rims ART ko
dc.identifier.doi 10.1016/j.cpc.2021.108265 ko
dc.identifier.url https://www.sciencedirect.com/science/article/pii/S0010465521003775?via%3Dihub ko
Appears in Collections:
NUE_Journal Papers

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show simple item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU