File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

정성균

Jung, Sung-Kyun
Energy Materials Research Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.number 13 -
dc.citation.startPage 2108790 -
dc.citation.title ADVANCED FUNCTIONAL MATERIALS -
dc.citation.volume 32 -
dc.contributor.author Jung, Sung-Kyun -
dc.contributor.author Kim, Hyungsub -
dc.contributor.author Song, Seok Hyun -
dc.contributor.author Lee, Seongsu -
dc.contributor.author Kim, Jongsoon -
dc.contributor.author Kang, Kisuk -
dc.date.accessioned 2023-12-21T14:37:10Z -
dc.date.available 2023-12-21T14:37:10Z -
dc.date.created 2021-12-01 -
dc.date.issued 2022-03 -
dc.description.abstract The need for batteries with high energy density and safety has motivated the development of Ni-rich layered cathodes with high thermal stability, requiring a revisit of the role of the transition-metal ion in the phase transition accompanying the oxygen evolution of highly charged cathodes. Here, the role of the transition-metal ion in LixNi0.5Co0.2Mn0.3O2 (x = 0.5, 0.33) is revealed in the phase transition and O-2 evolution occurring at high temperatures using combined in situ high-temperature neutron diffraction (ND) and gas analyses. The thermal migration of each transition-metal ion upon heating is directly visualized at different states of charge using Rietveld refinement of ND patterns as well as the maximum entropy method. The oxygen evolution observed for the highly charged state at low temperature is accompanied by M3O4-type spinel (M = Ni, Co, and Mn) phase formation with preferential occupation of Co in the tetrahedral site. Co3+/Co2+ reduction accompanying the oxygen evolution rather can mitigate and delay the formation of the rock-salt phase. The findings provide insight into the manipulation of the composition of Ni-rich layered cathode for the design of cathodes with high energy density and safety. -
dc.identifier.bibliographicCitation ADVANCED FUNCTIONAL MATERIALS, v.32, no.13, pp.2108790 -
dc.identifier.doi 10.1002/adfm.202108790 -
dc.identifier.issn 1616-301X -
dc.identifier.scopusid 2-s2.0-85121370637 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/54955 -
dc.identifier.url https://onlinelibrary.wiley.com/doi/10.1002/adfm.202108790 -
dc.identifier.wosid 000730521100001 -
dc.language 영어 -
dc.publisher John Wiley & Sons Ltd. -
dc.title Unveiling the Role of Transition-Metal Ion in the Thermal Degradation of Layered Ni–Co–Mn Cathodes for Lithium Rechargeable Batteries -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor in situ analysis -
dc.subject.keywordAuthor Li-ion batteries -
dc.subject.keywordAuthor neutron diffraction -
dc.subject.keywordAuthor oxygen evolution -
dc.subject.keywordAuthor thermal stability -
dc.subject.keywordPlus TIME-RESOLVED XRD -
dc.subject.keywordPlus STRUCTURAL-CHANGES -
dc.subject.keywordPlus ELECTRON-MICROSCOPY -
dc.subject.keywordPlus STABILITY -
dc.subject.keywordPlus DECOMPOSITION -
dc.subject.keywordPlus DIFFRACTION -
dc.subject.keywordPlus INSTABILITY -
dc.subject.keywordPlus CAPACITY -
dc.subject.keywordPlus LIXCOO2 -
dc.subject.keywordPlus ORIGIN -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.