File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.startPage 100467 -
dc.citation.title MATERIALS TODAY PHYSICS -
dc.citation.volume 20 -
dc.contributor.author Samanta, Sudeshna -
dc.contributor.author Nissimagoudar, Arun S. -
dc.contributor.author Basori, Rabaya -
dc.contributor.author Kuzmin, Alexei -
dc.contributor.author Li, Mingtao -
dc.contributor.author Zhang, Jinbo -
dc.contributor.author Wang, Lin -
dc.contributor.author Tian, Yongjun -
dc.contributor.author Mao, Ho-kwang -
dc.date.accessioned 2023-12-21T15:14:04Z -
dc.date.available 2023-12-21T15:14:04Z -
dc.date.created 2021-11-18 -
dc.date.issued 2021-09 -
dc.description.abstract The hybrid inorganic/organic closed p-stacking and soft lattice of a copper anion radial (Copper-7,7,8,8-tetracyanoquinodimethane) renders its electrical conductivity and structural modifications, which are susceptible to temperature and pressure. The geometry of its metal-ligand construction contemplates the concept of topology with a charge-transfer instability. A pressure-induced ionic-neutral phase transition occurs and accompanies an anomalously large electrical conductivity, carries topological charges, and possesses a low energy gap smaller than the Coulomb gap. X-ray absorption spectroscopy of the metal establishes the high electrical conduction by the topological charges. X-ray diffraction and the first-principles calculations further suggest that the compression leads to an irreversible alteration in the metal coordination and rotation of the quinoid rings of the anion. The present observation demonstrates a close coupling of topological charges and lattice dynamics within a relatively low-pressure regime, which may expand a novel paradigm for the comprehensive topological charge transport phenomena including thermoelectric effects in future. (c) 2021 Published by Elsevier Ltd. -
dc.identifier.bibliographicCitation MATERIALS TODAY PHYSICS, v.20, pp.100467 -
dc.identifier.doi 10.1016/j.mtphys.2021.100467 -
dc.identifier.issn 2542-5293 -
dc.identifier.scopusid 2-s2.0-85109093320 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/54893 -
dc.identifier.url https://www.sciencedirect.com/science/article/pii/S2542529321001280?via%3Dihub -
dc.identifier.wosid 000704380400002 -
dc.language 영어 -
dc.publisher ELSEVIER -
dc.title Unprecedented pressure-driven metallization and topological charge transport in an anion radical salt -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Materials Science, Multidisciplinary; Physics, Applied -
dc.relation.journalResearchArea Materials Science; Physics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Topological charge transport -
dc.subject.keywordAuthor Pressure-temperature phase-diagram -
dc.subject.keywordAuthor X-ray absorption -
dc.subject.keywordAuthor Charge-transfer complex -
dc.subject.keywordPlus X-RAY-ABSORPTION -
dc.subject.keywordPlus TCNQ -
dc.subject.keywordPlus PIEZOCHROMISM -
dc.subject.keywordPlus CONDUCTIVITY -
dc.subject.keywordPlus BEHAVIOR -
dc.subject.keywordPlus BAND -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.