File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

DingFeng

Ding, Feng
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 7822 -
dc.citation.number 18 -
dc.citation.startPage 7815 -
dc.citation.title NANO LETTERS -
dc.citation.volume 21 -
dc.contributor.author Zhao, Yuzhou -
dc.contributor.author Kong, Xiao -
dc.contributor.author Shearer, Melinda J. -
dc.contributor.author Ding, Feng -
dc.contributor.author Jin, Song -
dc.date.accessioned 2023-12-21T15:14:50Z -
dc.date.available 2023-12-21T15:14:50Z -
dc.date.created 2021-10-18 -
dc.date.issued 2021-09 -
dc.description.abstract Chemical etching can create novel structures inaccessible by growth and provide complementary understanding on the growth mechanisms of complex nanostructures. Screw dislocation-driven growth influences the layer stackings of transition metal dichalcogenides (MX2) resulting in complex spiral morphologies. Herein, we experimentally and theoretically study the etching of screw dislocated WS2 and WSe2 nanostructures using H2O2 etchant. The kinetic Wulff constructions and Monte Carlo simulations establish the etching principles of single MX2 layers. Atomic force microscopy characterization reveals diverse etching morphology evolution behaviors around the dislocation cores and along the exterior edges, including triangular, hexagonal, or truncated hexagonal holes and smooth or rough edges. These behaviors are influenced by the edge orientations, layer stackings, and the strain of screw dislocations. Ab initio calculation and kinetic Monte Carlo simulations support the experimental observations and provide further mechanistic insights. This knowledge can help one to understand more complex structures created by screw dislocations through etching. -
dc.identifier.bibliographicCitation NANO LETTERS, v.21, no.18, pp.7815 - 7822 -
dc.identifier.doi 10.1021/acs.nanolett.1c02799 -
dc.identifier.issn 1530-6984 -
dc.identifier.scopusid 2-s2.0-85115944995 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/54765 -
dc.identifier.url https://pubs.acs.org/doi/10.1021/acs.nanolett.1c02799 -
dc.identifier.wosid 000700883900052 -
dc.language 영어 -
dc.publisher AMER CHEMICAL SOC -
dc.title Chemical Etching of Screw Dislocated Transition Metal Dichalcogenides -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor transition metal dichalcogenides -
dc.subject.keywordAuthor etching -
dc.subject.keywordAuthor crystal growth -
dc.subject.keywordAuthor screw dislocation -
dc.subject.keywordAuthor kinetic Monte Carlo -
dc.subject.keywordPlus DRIVEN GROWTH -
dc.subject.keywordPlus EPITAXIAL-GROWTH -
dc.subject.keywordPlus FEW-LAYER -
dc.subject.keywordPlus EDGE -
dc.subject.keywordPlus HETEROSTRUCTURES -
dc.subject.keywordPlus CRYSTALS -
dc.subject.keywordPlus EVOLUTION -
dc.subject.keywordPlus SPIRALS -
dc.subject.keywordPlus SHAPE -
dc.subject.keywordPlus WSE2 -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.