File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.number 10 -
dc.citation.startPage e1009871 -
dc.citation.title PLOS GENETICS -
dc.citation.volume 17 -
dc.contributor.author Jeong, Jiwon -
dc.contributor.author Lee, Jongbin -
dc.contributor.author Kim, Ji-hyung -
dc.contributor.author Lim, Chunghun -
dc.date.accessioned 2023-12-21T15:11:06Z -
dc.date.available 2023-12-21T15:11:06Z -
dc.date.created 2021-10-30 -
dc.date.issued 2021-10 -
dc.description.abstract Kohlschutter-Tonz syndrome (KTS) manifests as neurological dysfunctions, including early-onset seizures. Mutations in the citrate transporter SLC13A5 are associated with KTS, yet their underlying mechanisms remain elusive. Here, we report that a Drosophila SLC13A5 homolog, I'm not dead yet (Indy), constitutes a neurometabolic pathway that suppresses seizure. Loss of Indy function in glutamatergic neurons caused "bang-induced" seizure-like behaviors. In fact, glutamate biosynthesis from the citric acid cycle was limiting in Indy mutants for seizure-suppressing glutamate transmission. Oral administration of the rate-limiting alpha-ketoglutarate in the metabolic pathway rescued low glutamate levels in Indy mutants and ameliorated their seizure-like behaviors. This metabolic control of the seizure susceptibility was mapped to a pair of glutamatergic neurons, reversible by optogenetic controls of their activity, and further relayed onto fan-shaped body neurons via the ionotropic glutamate receptors. Accordingly, our findings reveal a micro-circuit that links neural metabolism to seizure, providing important clues to KTS-associated neurodevelopmental deficits.

Author summary

Kohlschutter-Tonz syndrome (KTS) is a neurodevelopmental disorder linked to two distinct genomic loci encoding the citrate transporter SLC13A5 and synaptic protein ROGDI, respectively. An early-onset seizure is the most prominent neurological symptom in KTS patients, yet how these genes contribute to the control of seizure susceptibility remains poorly understood. Our study establishes behavioral models of seizure in Drosophila mutants of KTS-associated genes and demonstrates a genetic, metabolic, and neural pathway of seizure suppression. We discover that the metabolic flux of the Krebs cycle to glutamate biosynthesis plays a critical role in scaling seizure-relevant glutamate transmission. We further map this seizure-suppressing pathway to a surprisingly small number of glutamatergic neurons and their ionotropic glutamate transmission onto a key sleep-promoting locus in the adult fly brain. Given that the excitatory amino acid glutamate is considered a general seizure-promoting neurotransmitter, our findings illustrate how glutamatergic transmission can have opposing effects on seizure susceptibility in the context of a micro-neural circuit, possibly explaining drug-resistant epilepsy. This seizure-suppressing locus in the Drosophila brain is also implicated in metabolism, circadian rhythms, and sleep, revealing the conserved neural principles of their intimate interaction with epilepsy across species.
-
dc.identifier.bibliographicCitation PLOS GENETICS, v.17, no.10, pp.e1009871 -
dc.identifier.doi 10.1371/journal.pgen.1009871 -
dc.identifier.issn 1553-7390 -
dc.identifier.scopusid 2-s2.0-85118845527 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/54754 -
dc.identifier.url https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1009871 -
dc.identifier.wosid 000715220900001 -
dc.language 영어 -
dc.publisher PUBLIC LIBRARY SCIENCE -
dc.title Metabolic flux from the Krebs cycle to glutamate transmission tunes a neural brake on seizure onset -
dc.type Article -
dc.description.isOpenAccess TRUE -
dc.relation.journalWebOfScienceCategory Genetics & Heredity -
dc.relation.journalResearchArea Genetics & Heredity -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus COUPLED CITRATE TRANSPORTERLONG-LIVED INDYLIFE-SPANEPILEPTIC ENCEPHALOPATHYTARGETED EXPRESSIONINSULIN-RESISTANCECIRCADIAN-RHYTHMSDROSOPHILAMODELMUTATIONS -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.