File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

김제형

Kim, Je-Hyung
Solid-State Quantum Architecture Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 9194 -
dc.citation.number 21 -
dc.citation.startPage 9187 -
dc.citation.title NANO LETTERS -
dc.citation.volume 21 -
dc.contributor.author Lee, Jin Hee -
dc.contributor.author Jeon, Woong Bae -
dc.contributor.author Moon, Jong Sung -
dc.contributor.author Lee, Junghyun -
dc.contributor.author Han, Sang-Wook -
dc.contributor.author Bodrog, Zoltán -
dc.contributor.author Gali, Adam -
dc.contributor.author Lee, Sang-Yun -
dc.contributor.author Kim, Je-Hyung -
dc.date.accessioned 2023-12-21T15:07:57Z -
dc.date.available 2023-12-21T15:07:57Z -
dc.date.created 2021-10-31 -
dc.date.issued 2021-11 -
dc.description.abstract Crystallographic defects such as vacancies and stacking faults engineer electronic band structure at the atomic level and create zero- and two-dimensional quantum structures in crystals. The combination of these point and planar defects can generate a new type of defect complex system. Here, we investigate silicon carbide nanowires that host point defects near stacking faults. These point–planar defect complexes in the nanowire exhibit outstanding optical properties of high-brightness single photons (>360 kcounts/s), a fast recombination time (<1 ns), and a high Debye–Waller factor (>50%). These distinct optical properties of coupled point-planar defects lead to an unusually strong zero-phonon transition, essential for achieving highly efficient quantum interactions between multiple qubits. Our findings can be extended to other defects in various materials and therefore offer a new perspective for engineering defect qubits. -
dc.identifier.bibliographicCitation NANO LETTERS, v.21, no.21, pp.9187 - 9194 -
dc.identifier.doi 10.1021/acs.nanolett.1c03013 -
dc.identifier.issn 1530-6984 -
dc.identifier.scopusid 2-s2.0-85118799841 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/54753 -
dc.identifier.url https://pubs.acs.org/doi/10.1021/acs.nanolett.1c03013 -
dc.identifier.wosid 000718298700032 -
dc.language 영어 -
dc.publisher American Chemical Society -
dc.title Strong Zero-Phonon Transition from Point Defect-Stacking Fault Complexes in Silicon Carbide Nanowires -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor silicon carbidepoint defectstacking faultnanowireDebye-Waller factor -
dc.subject.keywordPlus QUANTUM EMISSIONCOHERENT CONTROLCOLOR-CENTERSSIC NANOWIRESAB-INITIOVACANCYENTANGLEMENTWHISKERSQUBITSSPINS -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.